RESUMEN
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Asunto(s)
Inmunidad Celular , Mitocondrias , Animales , HumanosRESUMEN
Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.
Asunto(s)
Linfocitos T CD8-positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Acetilación , Histonas/metabolismo , Cuerpos Cetónicos , Animales , RatonesRESUMEN
Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.
Asunto(s)
Metabolismo Energético , Ácido Láctico , Ácido Láctico/metabolismo , Transporte de Electrón , Fosforilación Oxidativa , Glucólisis/fisiología , Adenosina Trifosfato/metabolismoRESUMEN
Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Fosforilación , Fosfoserina/metabolismo , Transducción de Señal , Estrés Fisiológico , Análisis de SupervivenciaRESUMEN
Tricarboxylic acid (TCA) cycle is a major hub for catabolic and anabolic reactions, yet cellular metabolic adaptations following its inhibition are largely unknown. Using multi-tiered omics approaches, Ryan et al. have shown convergent activation of the integrated stress response (ISR) through ATF4-mediated rewiring of cellular amino acid and redox metabolic pathways.
Asunto(s)
Aminoácidos , Ciclo del Ácido Cítrico , Homeostasis , Redes y Vías Metabólicas , Oxidación-ReducciónRESUMEN
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Asunto(s)
Ciclo del Ácido Cítrico , Redes y Vías Metabólicas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Ácidos TricarboxílicosRESUMEN
Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.
Asunto(s)
Citrato (si)-Sintasa , Ciclo del Ácido Cítrico , Ácido Cítrico , Mitocondrias , Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/metabolismo , Toxoplasma/genética , Mitocondrias/metabolismo , Animales , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Ácido Cítrico/metabolismo , Ratones , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/genéticaRESUMEN
The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through the coactivation of coupled transcription factors, such as estrogen-related receptor (ERR), nuclear respiratory factor 1 (Nrf1), GA-binding protein-a (Gabpa), and Yin Yang 1 (YY1). We hypothesized that PGC-1α plays an essential role in the transcription of TCA cycle genes. Thus, utilizing localization peaks of PGC-1α to TCA cycle gene promoters would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for the transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful in understanding how those genes are dysregulated in pathological conditions.
Asunto(s)
Ciclo del Ácido Cítrico , Factor Nuclear 1 de Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos , Factor de Transcripción YY1 , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Animales , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Humanos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Factor Nuclear 1 de Respiración/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Transcripción Genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptor Relacionado con Estrógeno ERRalfaRESUMEN
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
RESUMEN
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Asunto(s)
Miofibrillas , Sarcómeros , Animales , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Drosophila/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismoRESUMEN
The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control.
Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Olfato , Ácido gamma-Aminobutírico/metabolismo , Animales , Drosophila melanogaster , Oxidación-Reducción , Ácido gamma-Aminobutírico/genéticaRESUMEN
In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration. We found that feeding preferentially upregulated the expression of the JH receptor gene Met and a JH-inducible gene, Kr-h1, in the flight muscles, and, thus, enhanced tissue-specific JH sensitivity and signaling. RNAi-mediated knockdown of Kr-h1 prevented flight-muscle degeneration. Likewise, blocking nutritional signals by pharmacological inhibition of the target of rapamycin complex 1 (TORC1) impaired JH sensitivity of the flight muscles in feeding aphids and subsequently delayed muscle degeneration. RNA-sequencing analysis revealed that enhanced JH signaling inhibited the transcription of genes involved in the tricarboxylic acid cycle, likely resulting in reduction of the energy supply, mitochondrial dysfunction and muscle-fiber breakdown. This study shows that nutrient-dependent hormone sensitivity regulates developmental plasticity in a tissue-specific manner, emphasizing a relatively underappreciated mechanism of hormone sensitivity in modulating hormone signaling.
Asunto(s)
Áfidos , Hormonas Juveniles , Animales , Áfidos/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Músculos/metabolismo , Reproducción , Alas de Animales/metabolismoRESUMEN
Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos , Transducción de Señal , Redes y Vías MetabólicasRESUMEN
Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that catalyzes the phosphorylation of monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid, respectively. Mutations in AGK cause Sengers syndrome, which is characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Here we identified AGK as a subunit of the mitochondrial TIM22 protein import complex. We show that AGK functions in a kinase-independent manner to maintain the integrity of the TIM22 complex, where it facilitates the import and assembly of mitochondrial carrier proteins. Mitochondria isolated from Sengers syndrome patient cells and tissues show a destabilized TIM22 complex and defects in the biogenesis of carrier substrates. Consistent with this phenotype, we observe perturbations in the tricarboxylic acid (TCA) cycle in cells lacking AGK. Our identification of AGK as a bona fide subunit of TIM22 provides an exciting and unexpected link between mitochondrial protein import and Sengers syndrome.
Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cardiomiopatías/genética , Catarata/genética , Ciclo del Ácido Cítrico , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Complejos Multiproteicos , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estabilidad Proteica , Transporte de Proteínas , TransfecciónRESUMEN
Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.
Asunto(s)
Senescencia Celular , Cobre , Fibrosis , Riñón , Mitocondrias , Complejo Piruvato Deshidrogenasa , Cobre/metabolismo , Mitocondrias/metabolismo , Fibrosis/metabolismo , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Riñón/metabolismo , Riñón/patología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ciclo del Ácido CítricoRESUMEN
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.
Asunto(s)
Ácido 3-Hidroxibutírico , Proteínas Quinasas Activadas por AMP , Miocardio , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Proteómica , Espectrometría de Masas en TándemRESUMEN
Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.
Asunto(s)
Ciclo del Ácido Cítrico , Ácidos Grasos , Ácido Láctico , Ratones Endogámicos C57BL , Músculo Esquelético , Obesidad , Oxidación-Reducción , Animales , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácido Láctico/metabolismo , Obesidad/metabolismo , Ratones , Masculino , Metabolismo Energético , Dieta Alta en Grasa/efectos adversos , Mitocondrias Musculares/metabolismo , Ratones Obesos , Condicionamiento Físico Animal , Respiración de la Célula , Mitocondrias/metabolismoRESUMEN
To ensure biological validity in metabolic phenotyping, findings must be replicated in independent sample sets. Targeted workflows have long been heralded as ideal platforms for such validation due to their robust quantitative capability. We evaluated the capability of liquid chromatography-mass spectrometry (LC-MS) assays targeting organic acids and bile acids to validate metabolic phenotypes of SARS-CoV-2 infection. Two independent sample sets were collected: (1) Australia: plasma, SARS-CoV-2 positive (n = 20), noninfected healthy controls (n = 22) and COVID-19 disease-like symptoms but negative for SARS-CoV-2 infection (n = 22). (2) Spain: serum, SARS-CoV-2 positive (n = 33) and noninfected healthy controls (n = 39). Multivariate modeling using orthogonal projections to latent structures discriminant analyses (OPLS-DA) classified healthy controls from SARS-CoV-2 positive (Australia; R2 = 0.17, ROC-AUC = 1; Spain R2 = 0.20, ROC-AUC = 1). Univariate analyses revealed 23 significantly different (p < 0.05) metabolites between healthy controls and SARS-CoV-2 positive individuals across both cohorts. Significant metabolites revealed consistent perturbations in cellular energy metabolism (pyruvic acid, and 2-oxoglutaric acid), oxidative stress (lactic acid, 2-hydroxybutyric acid), hypoxia (2-hydroxyglutaric acid, 5-aminolevulinic acid), liver activity (primary bile acids), and host-gut microbial cometabolism (hippuric acid, phenylpropionic acid, indole-3-propionic acid). These data support targeted LC-MS metabolic phenotyping workflows for biological validation in independent sample sets.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Fenotipo , Ácidos y Sales BiliaresRESUMEN
Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.
Asunto(s)
COVID-19 , Lipidómica , Metabolómica , Mitocondrias , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/virología , COVID-19/metabolismo , Metabolómica/métodos , Mitocondrias/metabolismo , Lipidómica/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Espectrometría de Masas/métodos , Síndrome Post Agudo de COVID-19 , Metaboloma , Adulto , Ciclo del Ácido Cítrico , Ceramidas/sangre , Ceramidas/metabolismoRESUMEN
Recent studies illustrate the importance of regulation of cellular metabolism, especially glycolysis and pathways branching from glycolysis, during vertebrate embryo development. For example, glycolysis generates cellular energy ATP. Glucose carbons are also directed to the pentose phosphate pathway, which is needed to sustain anabolic processes in the rapidly growing embryos. However, our understanding of the exact status of glycolytic metabolism as well as genes that regulate glycolytic metabolism are still incomplete. Sall4 is a zinc finger transcription factor that is highly expressed in undifferentiated cells in developing mouse embryos, such as blastocysts and the post-implantation epiblast. TCre; Sall4 conditional knockout mouse embryos exhibit various defects in the posterior part of the body, including hindlimbs. Using transcriptomics approaches, we found that many genes encoding glycolytic enzymes are upregulated in the posterior trunk, including the hindlimb-forming region, of Sall4 conditional knockout mouse embryos. In situ hybridization and qRT-PCR also confirmed upregulation of expression of several glycolytic genes in hindlimb buds. A fraction of those genes are bound by SALL4 at the promoters, gene bodies or distantly-located regions, suggesting that Sall4 directly regulates expression of several glycolytic enzyme genes in hindlimb buds. To further gain insight into the metabolic status associated with the observed changes at the transcriptional level, we performed a comprehensive analysis of metabolite levels in limb buds in wild type and Sall4 conditional knockout embryos by high-resolution mass spectrometry. We found that the levels of metabolic intermediates of glycolysis are lower, but glycolytic end-products pyruvate and lactate did not exhibit differences in Sall4 conditional knockout hindlimb buds. The increased expression of glycolytic genes would have caused accelerated glycolytic flow, resulting in low levels of intermediates. This condition may have prevented intermediates from being re-directed to other pathways, such as the pentose phosphate pathway. Indeed, the change in glycolytic metabolite levels is associated with reduced levels of ATP and metabolites of the pentose phosphate pathway. To further test whether glycolysis regulates limb patterning downstream of Sall4, we conditionally inactivated Hk2, which encodes a rate-limiting enzyme gene in glycolysis and is regulated by Sall4. The TCre; Hk2 conditional knockout hindlimb exhibited a short femur, and a lack of tibia and anterior digits in hindlimbs, which are defects similarly found in the TCre; Sall4 conditional knockout. The similarity of skeletal defects in Sall4 mutants and Hk2 mutants suggests that regulation of glycolysis plays a role in hindlimb patterning. These data suggest that Sall4 restricts glycolysis in limb buds and contributes to patterning and regulation of glucose carbon flow during development of limb buds.