Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; 20(33): e2400149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528389

RESUMEN

Layered Na2FePO4F (NFPF) cathode material has received widespread attention due to its green nontoxicity, abundant raw materials, and low cost. However, its poor inherent electronic conductivity and sluggish sodium ion transportation seriously impede its capacity delivery and cycling stability. In this work, NFPF by Ti doping and conformal carbon layer coating via solid-state reaction is modified. The results of experimental study and density functional theory calculations reveal that Ti doping enhances intrinsic conductivity, accelerates Na-ion transport, and generates more Na-ion storage sites, and pyrolytic carbon from polyvinylpyrrolidone (PVP) uniformly coated on the NFPF surface improves the surface/interface conductivity and suppresses the side reactions. Under the combined effect of Ti doping and carbon coating, the optimized NFPF (marked as 5T-NF@C) exhibits excellent electrochemical performance, with a high capacity of 108.4 mAh g-1 at 0.2C, a considerable capacity of 80.0 mAh g-1 even at high current density of 10C, and a high capacity retention rate of 81.8% after 2000 cycles at 10C. When assembled into a full cell with a hard carbon anode, 5T-NF@C also show good applicability. This work indicates that co-modification of Ti doping and carbon coating makes NFPF achieve high rate and long cycle performance for sodium-ion batteries.

2.
Chemphyschem ; 25(13): e202400064, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38575386

RESUMEN

Layered Ni-rich oxides (LiNi1-x-yCoxMnyO2) cathode materials are of current interest in high-energy-demanding applications, such as electric vehicles because of high discharge capacity and high intercalation potential. Here, the effect of co-doping a small amount of Ti and Ta on the crystal structure, morphology, and electrochemical properties of high Ni-rich cathode material LiNi0.8Mn0.1Co0.1-x-yTixTayO2 (0.0≤x+y≤0.2) was systematically investigated. This work demonstrates that an optimum level of Ti and Ta doping is beneficial towards enhancing electrochemical performance. The optimal Ti4+ and Ta5+ co-doped cathode LiNi0.8Mn0.1Co0.09Ti0.005Ta0.005O2 exhibits a superior initial discharge capacity of 161.1 mAh g-1 at 1 C, and excellent capacity retention of 87.1 % after 250 cycles, compared to the pristine sample that exhibits only 59.8 % capacity retention. Moreover, the lithium-ion diffusion coefficients for the co-doped cathode after the 3rd and 50th cycles are 9.9×10-10 cm2 s-1 and 9.3×10-10 cm2 s-1 respectively, which is higher than that of the pristine cathode (3.3×10-10 cm2 s-1 and 2.5×10-10 cm2 s-1 respectively). Based on these studies, we conclude that Ti and Ta co-doping enhances structural stability by mitigating irreversible phase transformation, improving Li-ion kinetics by expanding interlayer spacing, and nanosizing primary particles, thereby stabilizing high-nickel cathode materials and significantly enhancing cyclability.

3.
Small ; 18(4): e2103106, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34758099

RESUMEN

Transition-metal sulfides (TMSs) are attractive oxygen evolution reaction (OER) electrocatalysts. Developing new strategies to improve their electrochemical performance of TMSs is of great significance. Herein, a unique pacman-like titanium-doped cobalt sulfide hollow superstructure (Ti-CoSx HSS) is fabricated as an OER electrocatalyst. Using a prearranged metal-organic framework (MOF)-on-MOF heterostructure as a precursor treated by one-pot sulfidation, a sequential structural conversion process leads to the formation of Ti-CoSx HSS, which is assembled by interconnected Ti-doped CoSx nanocages around a cake-like cavity. Benefiting from the architecture and compositional advantages, Ti-CoSx HSS exhibits excellent OER performance with an overpotential of 249 mV at 10 mA cm-2 and Tafel slope of 45.5 mV dec-1 due to increased active site exposure, enhanced electron and mass transfer. This strategy enabled by MOF-on-MOF paves the way toward innovative MOF derivatives for various applications.

4.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360804

RESUMEN

Intermediate water (IW) in hydrated bioactive glasses remains uninvestigated. We obtained titanium (Ti)-containing bioactive glasses (BGTs) (Ti at 5%, 7.5% and 10% of the glass system) using the sol-gel technique. Their thermal, physicochemical, and morphological properties, before and after Ti-doping, were analysed using DTA, XRD, FTIR, TEM, and SEM accessorised with EDAX, and size distribution and zeta potential surface charges were determined using a NanoZetasizer. The IW in hydrated BGTs was investigated by cooling and heating runs of DSC measurements. Moreover, the mode of death in an osteosarcoma cell line (MG63) was evaluated at different times of exposure to BGT discs. Ti doping had no remarkable effect on the thermal, physicochemical, and morphological properties of BGTs. However, the morphology, size, and charges of BGT nano-powders were slightly changed after inclusion of Ti compared with those of BGT0; for example, the particle size increased with increasing Ti content (from 4-5 to 7-28 nm). The IW content was enhanced in the presence of Ti. The mode of cell death revealed the effect of IW content on the proliferation of cells exposed to BGTs. These findings should help improve the biocompatibility of inorganic biomaterials.


Asunto(s)
Materiales Biocompatibles Revestidos , Vidrio/química , Ensayo de Materiales , Titanio , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Titanio/química , Titanio/farmacología , Agua/química
5.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998204

RESUMEN

This study delves into the effects of titanium (Ti) doping on the optical properties of vanadium dioxide (VO2), a material well known for its metal-to-insulator transition (MIT) near room temperature. By incorporating Ti into VO2's crystal lattice, we aim to uncover the resultant changes in its physical properties, crucial for enhancing its application in smart devices. Utilizing polarized infrared micro-spectroscopy, we examined TixV1-xO2 single crystals with varying Ti concentrations (x = 0.059, x = 0.082, and x = 0.187) across different crystal phases (the conductive rutile phase and insulating monoclinic phases M1 and M2) from the far-infrared to the visible spectral range. Our findings reveal that Ti doping significantly influences the phononic spectra, introducing absorption peaks not attributed to pure VO2 or TiO2. This is especially notable with polarization along the crystal growth axis, mainly in the x = 0.187 sample. Furthermore, we demonstrate that the electronic contribution to optical conductivity in the metallic phase exhibits strong anisotropy, higher along the c axis than the a-b plane. This anisotropy, coupled with the progressive broadening of the zone center infrared active phonon modes with increasing doping, highlights the complex interplay between structural and electronic dynamics in doped VO2. Our results underscore the potential of Ti doping in fine-tuning VO2's electronic and thermochromic properties, paving the way for its enhanced application in optoelectronic devices and technologies.

6.
Front Chem ; 12: 1454524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281034

RESUMEN

Modifying photoanodes with metal-organic frameworks (MOFs) as oxygen evolution reaction (OER) cocatalysts has emerged as a promising approach to enhance the efficiency of photoelectrochemical (PEC) water oxidation. However, designing OER-active MOFs with both high photo- and electrochemical stability remains a challenge, limiting the advancement of this research. Herein, we present a facile method to fabricate a MOF-modified photoanode by directly loading a pentanuclear Co-based MOF (Co-MOF) onto the surface of a Ti-doped hematite photoanode (Ti:Fe2O3). The resulting Co-MOF/Ti:Fe2O3 modified photoanode exhibits an enhanced photocurrent density of 1.80 mA∙cm-2 at 1.23 V, surpassing those of the Ti:Fe2O3 (1.53 mA∙cm-2) and bare Fe2O3 (0.59 mA∙cm-2) counterparts. Additionally, significant enhancements in charge injection and separation efficiencies, applied bias photon-to-current efficiency (ABPE), incident photon to current conversion efficiency (IPCE), and donor density (Nd) were observed. Notably, a minimal photocurrent decay of only 5% over 10 h demonstrates the extraordinary stability of the Co-MOF/Ti:Fe2O3 photoanode. This work highlights the efficacy of polynuclear Co-based MOFs as OER cocatalysts in designing efficient and stable photoanodes for PEC water splitting applications.

7.
Materials (Basel) ; 17(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612122

RESUMEN

The effects of Ti doping on the microstructure and properties of SiCp/Al composites fabricated by pressureless infiltration were comprehensively investigated using first-principles calculations and experimental analyses. First-principles calculations revealed that the interface wetting and bonding strength in an Al/SiC system could be significantly enhanced by Ti doping. Subsequently, the Ti element was incorporated into SiC preforms in the form of TiO2 and TiC to verify the influence of Ti doping on the pressureless infiltration performance of SiCp/Al composites. The experimental results demonstrated that the pressureless infiltration of molten Al into SiC preforms was promoted by adding TiC or TiO2 due to the improved wettability. However, incorporating TiO2 leads to the growth of AlN whiskers under a N2 atmosphere, thereby hindering the complete densification of the composites. On the other hand, TiC doping can improve wettability and interface strength without deleterious reactions. As a consequence, the TiC-doped SiCp/Al composites exhibited excellent properties, including a high relative density of 99.4%, a bending strength of 287 ± 18 MPa, and a thermal conductivity of 142 W·m-1·K-1.

8.
ACS Appl Mater Interfaces ; 16(27): 35114-35122, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941158

RESUMEN

The cathode material Na4Fe3(PO4)2P2O7 (NFPP) has shown great potential for sodium-ion batteries (SIBs) due to its cost-effectiveness, prolonged cycle life, and high theoretical capacity. However, the practical large-scale production of NFPP is hindered by its poor intrinsic electron conductivity and the presence of a NaFePO4 impurity. In this study, we propose a mutually reinforcing approach involving Ti doping, mechanical nano treatment, and in situ carbon coating to produce Ti-NFPP via the solid-state methods of synthesis. Ti doping strengthens the covalent Fe-O interaction, hence accelerating the electron transfer and the redox reactions Fe2+/Fe3+. In situ carbon coating improves electrical conductivity and allows for accommodating the volumetric variation. Nanosized treatment promotes the uniform progression of solid-state reactions. The synthesized Na4Fe2.98Ti0.01(PO4)2P2O7 material (Ti-NFPP) exhibits promising electrochemical properties with an initial discharge specific capacity of 112.5 mA h g-1 at 0.1 C. A volumetric change of only 2.98% was observed during the de/sodiation process, indicating an enhanced reversibility of the crystal lattice. Moreover, it demonstrates exceptional cycling stability with a capacity retention rate of 97.2 mA h g-1 at 10 C over 5000 cycles. These findings offer a promising pathway for the large-scale production of Ti-NFPP in SIBs.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37916737

RESUMEN

Yb0.4Co4Sb12, being a well-studied system, has shown notably high thermoelectric performance due to the Yb filler atom-driven large concentration of charge carriers and lower value of thermal conductivity. In this work, the thermoelectric performance of YbzCo4-xTixSb12 (where z = 0, x = 0 and z = 0.4, x = 0, 0.04, and 0.08) upon Ti doping prepared by the melt-quenched-annealing followed by spark plasma sintering (SPS) has been studied in the temperature range of 300-700 K. Addition of Yb and doping of donor Ti at the Co site simultaneously increase the electrical conductivity to 1453.5 S/cm at 300 K, which ultimately boosts the power factor as high as ∼4.3 mW/(m·K2) at 675 K in Yb0.4Co3.96Ti0.04Sb12. Adversely, a significant reduction in thermal conductivity is obtained from ∼7.69 W/(m·K) (Co4Sb12) to ∼3.50 W/(m·K) (Yb0.4Co3.96Ti0.04Sb12) at ∼300 K. As a result, the maximum zT is achieved as ∼0.85 at 623 K with high hardness of 584 HV for the composition of Yb0.4Co3.96Ti0.04Sb12, which demonstrates it to be an efficient material suitable for intermediate temperature thermoelectric applications.

10.
Environ Sci Pollut Res Int ; 30(12): 34338-34349, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36512283

RESUMEN

In this study, different compositions of Ti-doped Bi2O3 photocatalytic materials were prepared by chemical solution decomposition method. It was used to degrade reactive brilliant blue KN-R, and then characterized by XRD, SEM, UV-vis DRS, XPS, photocurrent, and other detection methods. The results show that when the catalyst dosage is 1.0 g/L and the initial concentration of reactive brilliant blue KN-R is 20 mg/L, the degradation rate of pure Bi2O3 to reactive brilliant blue KN-R is 75.30%; the Ti doping amount is 4% (4Ti/Bi2O3), 4Ti/Bi2O3 had the best degradation effect on reactive brilliant blue KN-R, and the degradation rate could reach 93.27%. When 4Ti/Bi2O3 was reused for 4 times, the degradation rate of reactive brilliant blue KN-R only decreased by 6.91%. Doping Ti can inhibit the growth of Bi2O3 grains, making the XRD peak of Ti/Bi2O3 material wider. The pure Bi2O3 particles are larger and the surface is smooth. With the increase of Ti doping content, the surface of Ti/Bi2O3 material grows from roughness to nanofibrous Bi4Ti3O12. The visible light absorption performance and electron separation and transfer ability of Bi2O3 are significantly improved by doping Ti ions. The band gap is reduced from 2.81 to 2.75 eV. In conclusion, doping Ti enhances the visible light absorption and electron separation and transfer capabilities of Bi2O3, reduces the band gap, and improves the surface morphology, which makes Bi2O3 have higher photocatalytic performance.


Asunto(s)
Luz , Titanio , Titanio/química , Bencenosulfonatos
11.
J Colloid Interface Sci ; 633: 82-91, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36436350

RESUMEN

We propose a synergistic strategy of titanium doping and surface coating with a Mn-rich shell to modify the Na-rich manganese-oxide-based cathode material Na0.67Ni0.33Mn0.67-xTixO1.9F0.1 in sodium-ion batteries and elucidate the underlying mechanism for enhanced material performance. First, it is found that the electrochemical performance of the proposed cathode material can be effectively improved when the Ti doping amount is x = 0.3. In addition to doping, the cathode material coated with a manganese-rich shell was prepared by a liquid coating method. The as-prepared Mn@Ti-doped-Na0.67Ni0.33Mn0.37Ti0.3O1.9F0.1 exhibited excellent electrochemical performance, delivering 169 mAh/g discharge capacity. The charge-discharge cycle test was carried out at a current density of 2C, and the sample not only provides a reversible capacity of 119 mAh/g but also has a capacity retention rate of 71 % after 500 charge-discharge cycles. The Ti doping and surface coating with a Mn-rich shell are shown to improve the specific discharge capacity, cycling stability and rate capability of the cathode material and mitigate voltage decay. These results validate our design principle and provide a novel approach to enhance the performance of cathode materials in sodium-ion batteries.

12.
J Colloid Interface Sci ; 581(Pt A): 276-291, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32771738

RESUMEN

Crystal defects are crucially important in semiconductor photocatalysis. To improve the reactivity of photocatalysts and attain desirable solar energy conversion, crystal defect engineering has gained considerable attention in real catalysts. Herein, we engineered crystal defects and mediate oxygen vacancies in host Bi2WO6 crystal lattice via varying content of Ti dopant to fabricate single-unit-cell layered structure, resulting in enhanced visible-light-driven photocatalytic efficiency. Density functional theory (DFT) calculations verified that the substitution of Bi cation in the crystal structure of Bi2WO6 can induce a new defect level, and increase the density of states (DOS) at the valence band maximum, which not only improve the charge dynamic but also the electronic conductivity. Remarkably, the single-unit-cell layers Ti-doped Bi2WO6 structure casts profoundly improved photocatalytic performance towards ceftriaxone sodium degradation, Cr(VI) reduction, and particularly higher photocatalytic H2 production rate, with a 5.8-fold increase compared to bulk Bi2WO6. Furthermore, the photoelectrochemical measurements unveil that the significantly higher charge migration and charge carrier dynamic counts for the elevated photocatalytic performance. After careful examination of experimental results, it was proved that the Ti doping mediated crystal defects, and engendered oxygen vacancies are critically important for controlling the photocatalytic performance of Bi2WO6.

13.
J Colloid Interface Sci ; 604: 562-567, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34274717

RESUMEN

Highly photoactive FeVO4 photoanodes with ordered nanoblock morphology and uniform Ti-doping were prepared by drop-casting mixed Ti and V precursors onto FeOOH nanorod films and following an annealing process. The results indicate that Ti4+ is uniformly doped into the FeVO4 lattice by substituting V5+ and provides an increased number of O2- vacancies. The optimized film thickness and doping level are 620 nm and 0.3%, respectively. Compared to the undoped sample, the Ti-doped photoanode showed ~ 219% enhancement in photocurrent at 1.0 V vs Ag/AgCl under back illumination of AM 1.5, reaching a state-of-the-art value of ~ 1.47 mA cm-2, and also achieved stable and efficient overall water splitting activity with evolution rates of 28.3 and 14.1 µmol cm-2h-1 for H2 and O2, respectively. The excellent PEC performance could be attributed to the remarkably enhanced charge carrier concentration and conductivity, and the facilitated charge transfer kinetics across the semiconductor/electrolyte interface, as a result of Ti-doping.

14.
ACS Appl Mater Interfaces ; 13(2): 2845-2852, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33406833

RESUMEN

Two terminal metal-oxide-metal devices based on niobium oxide thin films exhibit a wide range of non-linear electrical characteristics that have applications in hardware-based neuromorphic computing. In this study, we compare the threshold-switching and current-controlled negative differential resistance (NDR) characteristics of cross-point devices fabricated from undoped Nb2O5 and Ti-doped Nb2O5 and show that doping offers an effective means of engineering the device response for particular applications. In particular, doping is shown to improve the device reliability and to provide a means of tuning the threshold and hold voltages, the hysteresis window, and the magnitude of the negative differential resistance. Based on temperature-dependent current-voltage characteristics and lumped-element modelling, these effects are attributed to doping-induced reductions in the device resistance and its rate of change with temperature (i.e., the effective thermal activation energy for conduction). Significantly, these studies also show that a critical activation energy is required for devices to exhibit NDR, with doping providing an effective means of engineering the current-voltage characteristics. These results afford an improved understanding of the physical mechanisms responsible for threshold switching and provide new insights for designing devices for specific applications.

15.
Membranes (Basel) ; 12(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35054551

RESUMEN

In this research, electrolyte-insulator-semiconductor (EIS) capacitors with Sb2O3 sensing membranes were fabricated. The results indicate that Mg doping and Ti-doped Sb2O3 membranes with appropriate annealing had improved material quality and sensing performance. Multiple material characterizations and sensing measurements of Mg-doped and Ti doping on Sb2O3 sensing membranes were conducted, including of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These detailed studies indicate that silicate and defects in the membrane could be suppressed by doping and annealing. Moreover, compactness enhancement, crystallization and grainization, which reinforced the surface sites on the membrane and boosted the sensing factor, could be achieved by doping and annealing. Among all of the samples, Mg doped membrane with annealing at 400 °C had the most preferable material properties and sensing behaviors. Mg-doped Sb2O3-based with appropriate annealing are promising for future industrial ionsensing devices and for possible integration with Sb2O3-based semiconductor devices.

16.
Nanomaterials (Basel) ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671361

RESUMEN

Ti-doped truncated octahedron LiTixMn2-xO4 nanocomposites were synthesized through a facile hydrothermal treatment and calcination process. By using spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), the effects of Ti-doping on the structure evolution and stability enhancement of LiMn2O4 are revealed. It is found that truncated octahedrons are easily formed in Ti doping LiMn2O4 material. Structural characterizations reveal that most of the Ti4+ ions are composed into the spinel to form a more stable spinel LiTixMn2-xO4 phase framework in bulk. However, a portion of Ti4+ ions occupy 8a sites around the {001} plane surface to form a new TiMn2O4-like structure. The combination of LiTixMn2-xO4 frameworks in bulk and the TiMn2O4-like structure at the surface may enhance the stability of the spinel LiMn2O4. Our findings demonstrate the critical role of Ti doping in the surface chemical and structural evolution of LiMn2O4 and may guide the design principle for viable electrode materials.

17.
ACS Appl Mater Interfaces ; 10(4): 3562-3570, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29300078

RESUMEN

Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type Na0.67Co1-xTixO2 (x < 0.2) cathode with an extended potential range higher than 4.4 V to present a high specific capacity of 166 mAh g-1. A group of P2-type cathodes containing various amounts of Ti is prepared using a facile synthetic method. These cathodes show different behaviors of the Na+/vacancy ordering. Na0.67CoO2 suffers severe capacity loss at high voltages due to irreversible structure changes causing serious polarization, while the Ti-substituted cathodes have long credible cycleability as well as high energy. In particular, Na0.67Co0.90Ti0.10O2 exhibits excellent capacity retention (115 mAh g-1) even after 100 cycles, whereas Na0.67CoO2 exhibits negligible capacity retention (<10 mAh g-1) at 4.5 V cutoff conditions. Na0.67Co0.90Ti0.10O2 also exhibits outstanding rate capabilities of 108 mAh g-1 at a current density of 1000 mA g-1 (7.4 C). Increased sodium diffusion kinetics from mitigated Na+/vacancy ordering, which allows high Na+ utilization, are investigated to find in detail the mechanism of the improvement by combining systematic analyses comprising TEM, in situ XRD, and electrochemical methods.

18.
ACS Appl Mater Interfaces ; 10(42): 35963-35971, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30251835

RESUMEN

Na3V2(PO4)3 has shown great promise in next-generation cathode materials for sodium-ion batteries owning to its fast Na+ diffusion in the three-dimensional open NASICON framework and high theoretical energy density. However, Na3V2(PO4)3 suffers from undesirable rate performance and unstable cyclability arising from low electronic conductivity. Herein, we propose a facile approach for significantly enhancing the electrochemical properties of Na3V2(PO4)3 by Ti doping at V site and constructing nanoparticle@carbon core-shell nanostructure. This material design provides fast electron conduction network within the whole active particles because of the mixed valence Ti4+/3+ in bulk and highly conductive carbon shell on the surface. Lattice doping and carbon coating reduce the electrode polarization and facilitate the electrode reaction kinetics, while the nanostructure enhances the ionic conduction by shortening the diffusion distance and offers sufficient contact of active particles with organic electrolyte. The multiple synergetic effects enable a superior electrochemical performance. The optimized Na3V1.9Ti0.1(PO4)3@C cathode shows a high specific capacity (116.6 mAh g-1 at 1C), an unprecedented rate performance (93.4 mAh g-1 at 400C), and an exceptional long-term high-rate cycling stability (capacity retention of 69.5% after 14 000 cycles at 100C, corresponding to 0.0002% decay per cycle).

19.
ACS Appl Mater Interfaces ; 10(51): 44376-44384, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30489060

RESUMEN

Cryptomelane-type α-MnO2 has been demonstrated as a promising anode material for high-energy Li-ion batteries because of its high capacity and intriguing [2 × 2] tunnel structure. However, applications of MnO2 electrode, especially at high current rates and mass active material loading, are limited by the poor mechanical stability, unstable solid electrolyte interphase layer, and low reversibility of conversion reactions. Here, we report a design of homogeneous core-shell MnO2 nanowires (NWs) created by near-surface gradient Ti doping (Ti-MnO2 NWs). Such a structurally coherent core-shell configuration endowed gradient volume expansion from the inner core to the outer shell, which could effectively release the stress of the NW lattice during cycling and avoid pulverization of the electrode. Moreover, the gradiently doped Ti is able to avoid the Mn metal coarsening, reducing the metal particle size and improving the reversibility of the conversion reaction. In this way, the Ti-MnO2 NWs achieved both high reversible areal and volumetrical capacities (2.3 mA h cm-2 and 991.3 mA h cm-3 at 200 mA g-1, respectively), a superior round-trip efficiency (Coulombic efficiency achieved above 99.5% after only 30 cycles), and a long lifetime (a high capacity of 742 mA h g-1 retained after 3000 cycle at 10 A g-1) at a high mass loading level of 3 mg cm-2. In addition, the detailed conversion reaction mechanism was investigated through in situ transmission electron microscopy, which further evidenced that the unique homogeneous core-shell structure could largely suppress the separation of core and shell upon charging and discharging. This new NW configuration could benefit the design of other large-volume-change lithium battery anode materials.

20.
Chemosphere ; 146: 51-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26706931

RESUMEN

The calcined layered double hydroxides (cLDHs) Ti-doped and undoped MgFe for this study were prepared by co-precipitation method followed by calcination at 500 °C. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and UV-Vis diffuse reflectance spectrum (DRS) techniques and tested for adsorption and photodegradation (including photocatalytic and photo-Fenton-like) of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous solutions under visible light irradiation. In the range of studied operating conditions, the as-prepared samples exhibited excellent photo-Fenton-like activity, leading to more than 80-95% degradation of 2,4,5-T at initial concentration of 100 mg L(-1) with 4 g calcined LDHs per liter, was accomplished in 360 min, while 2,4,5-T half-life time was as short as 99-182 min. The kinetics of adsorption and photodegradation of 2,4,5-T were also discussed. These results offered a green, low cost and high efficiency photocatalyst for environmental remediation.


Asunto(s)
Ácido 2,4,5-Triclorofenoxiacético/química , Herbicidas/química , Hidróxidos/química , Contaminantes Químicos del Agua/química , Ácido 2,4,5-Triclorofenoxiacético/efectos de la radiación , Adsorción , Herbicidas/efectos de la radiación , Hierro/química , Magnesio/química , Fotólisis , Titanio/química , Contaminantes Químicos del Agua/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA