Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 703: 149648, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38368675

RESUMEN

Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Saponinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Microscopía Electrónica de Transmisión , Saponinas/uso terapéutico
2.
Small ; 20(11): e2305746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941496

RESUMEN

Redox-induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi-interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2 gas, a reaction pathway of CuO → monoclinic m-Cu4 O3 → Cu2 O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2 O/m-Cu4 O3 interface shows a diffuse-type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m-Cu4 O3 /CuO transformation. Together with atomistic modeling, it is shown that such a multi-interface transformation results from the surface-reaction-induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2 O and m-Cu4 O3 , and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.

3.
Small ; 20(4): e2303511, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749964

RESUMEN

Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low-voltage aberration-corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration-dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature-sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high-resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic-level structure and the large-area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials.

4.
Small ; 20(1): e2304683, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649200

RESUMEN

The addition of Pt generally promotes the reduction of Co3 O4 in supported catalysts, which further improves their activity and selectivity. However, due to the limited spatial resolution, how Pt and its location and distribution affect the reduction of Co3 O4 remains unclear. Using ex situ and in situ ambient pressure scanning transmission electron microscopy, combined with temperature-programmed reduction, the reduction of silica-supported Co3 O4 without Pt and with different location and distribution of Pt is studied. Shrinkage of Co3 O4 nanoparticles is directly observed during their reduction, and Pt greatly lowers the reduction temperature. For the first time, the initial reduction of Co3 O4 with and without Pt is studied at the nanoscale. The initial reduction of Co3 O4 changes from surface to interface between Co3 O4 and SiO2 . Small Pt nanoparticles located at the interface between Co3 O4 and SiO2 promote the reduction of Co3 O4 by the detachment of Co3 O4 /CoO from SiO2 . After reduction, the Pt and part of the Co form an alloy with Pt well dispersed. This study for the first time unravels the effects of Pt location and distribution on the reduction of Co3 O4 nanoparticles, and helps to design cobalt-based catalysts with efficient use of Pt as a reduction promoter.

5.
Small ; 20(6): e2304799, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786289

RESUMEN

Garnet-type Li7 La3 Zr2 O12 (LLZO) solid-state electrolytes hold great promise for the next-generation all-solid-state batteries. An in-depth understanding of the phase transformation during synthetic processes is required for better control of the crystallinity and improvement of the ionic conductivity of LLZO. Herein, the phase transformation pathways and the associated surface amorphization are comparatively investigated during the sol-gel and solid-state syntheses of LLZO using in situ heating transmission electron microscopy (TEM). The combined ex situ X-ray diffraction and in situ TEM techniques are used to reveal two distinct phase transformation pathways (precursors â†’ La2 Zr2 O7  â†’ LLZO and precursors â†’ LLZO) and the subsequent layer-by-layer crystal growth of LLZO on the atomic scale. It is also demonstrated that the surface amorphization surrounding the LLZO crystals is sensitive to the postsynthesis cooling rate and significantly affects the ionic conductivity of pelletized LLZO. This work brings up a critical but often overlooked issue that may greatly exacerbate the Li-ion conductivity by undesired synthetic conditions, which can be leveraged to ameliorate the overall crystallinity to improve the electrochemical performance of LLZO. These findings also shed light on the significance of optimizing surface structure to ensure superior performance of Li-ion conductors.

6.
Part Fibre Toxicol ; 21(1): 26, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778339

RESUMEN

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Asunto(s)
Material Particulado , Alveolos Pulmonares , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Células A549 , Material Particulado/toxicidad , Material Particulado/análisis , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Tamaño de la Partícula , Microscopía Electrónica de Transmisión , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
7.
Microsc Microanal ; 30(1): 1-13, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38156710

RESUMEN

Early-stage clustering in two Al-Mg-Zn(-Cu) alloys has been investigated using atom probe tomography and transmission electron microscopy. Cluster identification by the isoposition method and a statistical approach based on the pair correlation function have both been applied to estimate the cluster size, composition, and volume fraction from atom probe data sets. To assess the accuracy of the quantification of clusters of different mean sizes, synthesized virtual data sets were used, accounting for a simulated degraded spatial resolution. The quality of the predictions made by the two complementary methods is discussed, considering the experimental and simulated data sets.

8.
Small ; : e2302455, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199132

RESUMEN

The optoelectronic signatures of free-standing few-atomic-layer black phosphorus nanoflakes are analyzed by in situ transmission electron microscopy (TEM). As compared to other 2D materials, the band gap of black phosphorus (BP) is related directly to multiple thicknesses and can be tuned by nanoflake thickness and strain. The photocurrent measurements with the TEM show a stable response to infrared light illumination and change of nanoflakes band gap with deformation while pressing them between two electrodes assembled in the microscope. The photocurrent spectra of an 8- and a 6-layer BP nanoflake samples are comparatively measured. Density functional theory (DFT) calculations are performed to identify the band structure changes of BP during deformations. The results should help to find the best pathways for BP smart band gap engineering via tuning the number of material atomic layers and programmed deformations to promote future optoelectronic applications.

9.
Small ; 19(52): e2304781, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635095

RESUMEN

Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.

10.
Small ; 19(49): e2303872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612798

RESUMEN

Nanocrystals play a key role in the modern energy, catalysis, semiconductor, and biology industries due to their unique structures and performances. However, controllable fabrication of ideal nanocrystals with the desired structures and properties is still challenging, which needs a deep understanding of their nucleation and growth process. Here, the research on nucleation and growth of nanocrystals studied by in situ transmission electron microscopy (TEM) is reviewed, mainly focusing on the atomic migration dynamics, interface evolution, and structure transformation. In addition, the challenges in the study of nanocrystal growth by TEM are discussed and the perspective on the future development of advanced in situ TEM techniques is provided. It is hoped that the review can give a deep insight into the nanocrystal nucleation and growth process, and further contribute to the rational design and precise fabrication of high-performance functional nanocrystals.

11.
Small ; 19(41): e2301415, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287411

RESUMEN

Carbonaceous materials are promising sodium-ion battery anodes. Improving their performance requires a detailed understanding of the ion transport in these materials, some important aspects of which are still under debate. In this work, nitrogen-doped porous hollow carbon spheres (N-PHCSs) are employed as a model system for operando analysis of sodium storage behavior in a commercial liquid electrolyte at the nanoscale. By combining the ex situ characterization at different states of charge with operando transmission electron microscopy experiments, it is found that a solvated ionic layer forms on the surface of N-PHCSs at the beginning of sodiation, followed by the irreversible shell expansion due to the solid-electrolyte interphase (SEI) formation and subsequent storage of Na(0) within the porous carbon shell. This shows that binding between Na(0) and C creates a Schottky junction making Na deposition inside the spheres more energetically favorable at low current densities. During sodiation, the SEI fills the gap between N-PHCSs, binding spheres together and facilitating the sodium ions' transport toward the current collector and subsequent plating underneath the electrode. The N-PHCSs layer acts as a protective layer between the electrolyte and the current collector, suppressing the possible growth of dendrites at the anode.

12.
Small ; 19(44): e2303380, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37386818

RESUMEN

Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly. Small Angle X-ray Scattering (SAXS) and scanning electron microscopy (SEM) analysis shows that the AuNTs and AgNRs form 3D and 2D hexagonal lattices in bulk, respectively. The colloidal crystals are also imaged by in situ Liquid-Cell Transmission Electron Microscopy. Under confinement, the affinity of the NPs for the liquid cell windows reduces their ability to stack perpendicularly to the membrane and lead to SCs with a lower dimensionality than their bulk counterparts. Moreover, extended beam irradiation leads to disassembly of the lattices, which is well described by a model accounting for the desorption kinetics highlighting the key role of the NP-membrane interaction in the structural properties of SCs in the liquid-cell. The results shed light on the reconfigurability of NP superlattices obtained by depletion-induced self-assembly, which can rearrange under confinement.

13.
Microsc Microanal ; 29(6): 2068-2079, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37831006

RESUMEN

Extracellular vesicles (EVs), including exosomes, are crucial in intercellular communication, but differentiating between exosomes and microvesicles is challenging due to their similar morphology and size. This study focuses on multivesicular bodies (MVBs), where exosomes mature, and optimizes exosome isolation using transmission electron microscopy (TEM) for size information. Considering that EVs are nanocolloidal particles, a salt-free Bis-Tris buffer is found to maintain EV integrity better than phosphate-buffered saline (PBS). Dynamic light scattering (DLS) and TEM analysis confirm that intact exosome fractions under the salt-free Bis-Tris buffer condition exhibit polydispersity, including a unique population of <50 nm vesicles resembling intraluminal membrane vesicles (ILVs) in MVBs, alongside larger populations. This <50 nm population disappears in PBS or Bis-Tris buffer with 140 mM NaCl, transforming into a monodisperse population >100 nm. Immunoelectron microscopy also validates the presence of CD63, an exosome biomarker, on approximately 50 nm EVs. These findings provide valuable insights into exosome characterization and isolation, essential for future biomedical applications in diagnostics and drug delivery.


Asunto(s)
Exosomas , Trometamina , Microscopía Electrónica , Microscopía Electrónica de Transmisión
14.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982745

RESUMEN

Rotavirus A (RVA) genome segments can reassort upon co-infection of target cells with two different RVA strains. However, not all reassortants are viable, which limits the ability to generate customized viruses for basic and applied research. To gain insight into the factors that restrict reassortment, we utilized reverse genetics and tested the generation of simian RVA strain SA11 reassortants carrying the human RVA strain Wa capsid proteins VP4, VP7, and VP6 in all possible combinations. VP7-Wa, VP6-Wa, and VP7/VP6-Wa reassortants were effectively rescued, but the VP4-Wa, VP4/VP7-Wa, and VP4/VP6-Wa reassortants were not viable, suggesting a limiting effect of VP4-Wa. However, a VP4/VP7/VP6-Wa triple-reassortant was successfully generated, indicating that the presence of homologous VP7 and VP6 enabled the incorporation of VP4-Wa into the SA11 backbone. The replication kinetics of the triple-reassortant and its parent strain Wa were comparable, while the replication of all other rescued reassortants was similar to SA11. Analysis of the predicted structural protein interfaces identified amino acid residues, which might influence protein interactions. Restoring the natural VP4/VP7/VP6 interactions may therefore improve the rescue of RVA reassortants by reverse genetics, which could be useful for the development of next generation RVA vaccines.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Humanos , Rotavirus/genética , Proteínas de la Cápside/genética , Genética Inversa , Cápside/química , Antígenos Virales
15.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298929

RESUMEN

Nanoparticles have been used to transport drugs to various body parts to treat cancer. Our interest is in gold nanoparticles (AuNPs) since they have the capacity to absorb light and convert it to heat, inducing cellular damage. This property is known as photothermal therapy (PTT) and has been studied in cancer treatment. In the present study, biocompatible citrate-reduced AuNPs were functionalized with a biologically active compound, 2-thiouracil (2-TU), of potential anticancer activity. Both the unfunctionalized (AuNPs) and functionalized (2-TU-AuNPs) were purified and characterized by UV-Vis absorption spectrophotometry, Zeta potential, and Transmission Electron Microscopy. Results showed monodispersed, spherical AuNPs with a mean core diameter of 20 ± 2 nm, a surface charge of -38 ± 5 mV, and a localized surface plasmon resonance peak at 520 nm. As a result of functionalization, the mean core diameter of 2-TU-AuNPs increased to 24 ± 4 nm, and the surface charge increased to -14 ± 1 mV. The functionalization of AuNPs and the load efficiency were further established through Raman spectroscopy and UV-Vis absorption spectrophotometry. The antiproliferative activities of AuNPs, 2-TU and 2-TU-AuNPs were examined by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay in the MDA-MB-231 breast cancer cell line. It was established that AuNPs significantly enhanced the antiproliferative activity of 2-TU. Furthermore, the irradiation of the samples with visible light at 520 nm decreased the half-maximal inhibitory concentration by a factor of 2. Thus, the 2-TU drug concentration and its side effect during treatments could be significantly reduced by synergistically exploiting the antiproliferative activity of 2-TU loaded onto AuNPs and the PTT effect of AuNPs.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Oro/farmacología , Oro/química , Terapia Fototérmica , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas del Metal/química , Ácido Cítrico
16.
J Lipid Res ; 63(5): 100198, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307397

RESUMEN

Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.


Asunto(s)
Lipoproteína Lipasa , Hormonas Peptídicas , Proteína 3 Similar a la Angiopoyetina , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/metabolismo , Apolipoproteína A-V , Epítopos , Humanos , Leucina Zippers , Lipoproteína Lipasa/metabolismo , Hormonas Peptídicas/metabolismo , Triglicéridos/metabolismo
17.
Small ; 18(19): e2200913, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35411673

RESUMEN

Direct atomic-scale observation of the local phase transition in transition metal dichalcogenides (TMDCs) is critically required to carry out in-depth studies of their atomic structures and electronic features. However, the structural aspects including crystal symmetries tend to be unclear and unintuitive in real-time monitoring of the phase transition process. Herein, by using in situ transmission electron microscopy, information about the phase transition mechanism of MoTe2 from hexagonal structure (2H phase) to monoclinic structure (1T' phase) driven by sublimation of Te atoms after a spike annealing is obtained directly. Furthermore, with the control of Te atom sublimation by modulating the hexagonal boron nitride (h-BN) coverage in the desired area, the lateral 1T'-enriched MoTe2 /2H MoTe2 homojunction can be one-step constructed via an annealing treatment. Owing to the gradient bandgap provided by 1T'-enriched MoTe2 and 2H MoTe2 , the photodetector composed of the 1T'-enriched MoTe2 /2H MoTe2 homojunction shows fast photoresponse and ten times larger photocurrents than that consisting of a pure 2H MoTe2 channel. The study reveals a route to improve the performance of optoelectronic and electronic devices based on TMDCs with both semiconducting and semimetallic phases.

18.
J Synchrotron Radiat ; 29(Pt 2): 431-438, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254306

RESUMEN

To improve the understanding of catalysts, and ultimately the ability to design better materials, it is crucial to study them during their catalytic active states. Using in situ or operando conditions allows insights into structure-property relationships, which might not be observable by ex situ characterization. Spatially resolved X-ray fluorescence, X-ray diffraction and X-ray absorption near-edge spectroscopy are powerful tools to determine structural and electronic properties, and the spatial resolutions now achievable at hard X-ray nanoprobe beamlines make them an ideal complement to high-resolution transmission electron microscopy studies in a multi-length-scale analysis approach. The development of a system to enable the use of a commercially available gas-cell chip assembly within an X-ray nanoprobe beamline is reported here. The novel in situ capability is demonstrated by an investigation of the redox behaviour of supported Pt nanoparticles on ceria under typical lean and rich diesel-exhaust conditions; however, the system has broader application to a wide range of solid-gas reactions. In addition the setup allows complimentary in situ transmission electron microscopy and X-ray nanoprobe studies under identical conditions, with the major advantage compared with other systems that the exact same cell can be used and easily transferred between instruments. This offers the exciting possibility of studying the same particles under identical conditions (gas flow, pressure, temperature) using multiple techniques.

19.
Exp Eye Res ; 216: 108933, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031282

RESUMEN

A characteristic rigid spatial arrangement of collagen fibrils in the stroma is critical for corneal transparency. This unique organization of collagen fibrils in corneal stroma can be impacted by the presence and interactions of proteoglycans and extracellular matrix (ECM) proteins in a corneal microenvironment. Earlier studies revealed that decorin, a leucine-rich proteoglycan in stroma, regulates keratocyte-collagen matrix assembly and wound healing in the cornea. This study investigated the role of decorin in the regulation of stromal fibrillogenesis and corneal transparency in vivo employing a loss-of-function genetic approach using decorin null (dcn-/-) and wild type (dcn+/+) mice and a standard alkali-injury model. A time-dependent ocular examinations with Slit lamp microscope in live animals assessed corneal clarity, haze, and neovascularization levels in normal and injured eyes. Morphometric changes in normal and injured dcn+/+ and dcn-/- corneas, post-euthanasia, were analyzed with Masson's Trichrome and Periodic Acid-Schiff (PAS) histology evaluations. The ultrastructure changes in all corneas were investigated with transmission electron microscopy (TEM). Injury to eye produced clinically relevant corneal haze and neovascularization in dcn-/- and dcn+/+ mice while corneas of uninjured eyes remained clear and avascular. A clinically significant haze and neovascularization appeared in injured dcn-/- corneas compared to the dcn+/+ corneas at day 21 post-injury and not at early tested times. Histological examinations revealed noticeably abnormal morphology and compromised collagen levels in injured dcn-/- corneas compared to the injured/normal dcn+/+ and uninjured dcn-/- corneas. TEM analysis exhibited remarkably uneven collagen fibrils size and distribution in the stroma with asymmetrical organization and loose packing in injured dcn-/- corneas than injured/normal dcn+/+ and uninjured dcn-/- corneas. The minimum and maximum inter-fibril distances were markedly irregular in injured dcn-/- corneas compared to all other corneas. Together, results of clinical, histological, and ultrastructural investigations in a genetic knockout model suggested that decorin influenced stromal fibrillogenesis and transparency in healing cornea.


Asunto(s)
Lesiones de la Cornea/metabolismo , Decorina/fisiología , Colágenos Fibrilares/metabolismo , Organogénesis/fisiología , Cicatrización de Heridas/fisiología , Animales , Quemaduras Químicas/metabolismo , Lesiones de la Cornea/patología , Proteínas de la Matriz Extracelular/metabolismo , Quemaduras Oculares/inducido químicamente , Colágenos Fibrilares/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microscopía con Lámpara de Hendidura , Hidróxido de Sodio
20.
Anal Biochem ; 647: 114692, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35461801

RESUMEN

Despite the important role of membrane proteins in biological function and physiology, studying them remains challenging because of limited biomimetic systems for the protein to remain in its native membrane environment. Cryo electron microscopy (Cryo-EM) is emerging as a powerful tool for analyzing the structure of membrane proteins. However, Cryo-EM and other membrane protein analyses are better studied in a native lipid bilayer. Although traditional, mimetic systems have disadvantages that limit their use in the study of membrane proteins. As an alternative, styrene-maleic acid copolymers are used to form nanoparticles with POPC:POPG lipids. Traditional characterization of these styrene maleic acid lipid nanoparticles (SMALPs) includes dynamic light scattering (DLS), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). In this study a new method was developed that utilizes SMALPs using a styrene-maleic acid copolymer (SMA) thin film on a TEM grid, acting as a substrate. By directly adding POPC:POPG lipid vesicles to the SMA coated grid SMALPs can be formed, visualized, and characterized by TEM without the need to make them in solution prior to imaging. We envision these functionalized grids could aid in single particle specimen preparation, increasing the efficiency of structural biology and biophysical techniques such as Cryo-EM.


Asunto(s)
Maleatos , Nanopartículas , Liposomas , Maleatos/química , Proteínas de la Membrana/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA