Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(2): 268-285, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31585693

RESUMEN

The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Fúngicas/metabolismo , Transducción de Señal , Levaduras/metabolismo , Animales , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Proteínas Fúngicas/genética , Humanos , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitinación , Ubiquitinas/metabolismo , Levaduras/genética
2.
Mol Cell ; 72(4): 753-765.e6, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392931

RESUMEN

DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Metilación de ADN , Histonas/metabolismo , Secuencia de Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/genética , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Histonas/genética , Humanos , Unión Proteica , Dominios Proteicos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Mol Cell ; 67(3): 423-432.e4, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712727

RESUMEN

Accurate pre-mRNA splicing is needed for correct gene expression and relies on faithful splice site recognition. Here, we show that the ubiquitin-like protein Hub1 binds to the DEAD-box helicase Prp5, a key regulator of early spliceosome assembly, and stimulates its ATPase activity thereby enhancing splicing and relaxing fidelity. High Hub1 levels enhance splicing efficiency but also cause missplicing by tolerating suboptimal splice sites and branchpoint sequences. Notably, Prp5 itself is regulated by a Hub1-dependent negative feedback loop. Since Hub1-mediated splicing activation induces cryptic splicing of Prp5, it also represses Prp5 protein levels and thus curbs excessive missplicing. Our findings indicate that Hub1 mediates enhanced, but error-prone splicing, a mechanism that is tightly controlled by a feedback loop of PRP5 cryptic splicing activation.


Asunto(s)
Ligasas/metabolismo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Empalmosomas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Hidrólisis , Ligasas/química , Ligasas/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Precursores del ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética , Relación Estructura-Actividad , Factores de Tiempo
4.
Semin Cell Dev Biol ; 132: 86-96, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216867

RESUMEN

The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.


Asunto(s)
Péptido Hidrolasas , Ubiquitina , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Enzimas Desubicuitinizantes/metabolismo , Biología , Ubiquitinación
5.
Semin Cell Dev Biol ; 132: 38-50, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34996712

RESUMEN

Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.


Asunto(s)
Ubiquitina , Ubiquitinas , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Sumoilación , Procesamiento Proteico-Postraduccional/genética , Proteoma/metabolismo
6.
J Biol Chem ; 299(7): 104915, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315790

RESUMEN

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Asunto(s)
Muerte Celular , Estrés del Retículo Endoplásmico , Ubiquitinas , eIF-2 Quinasa , Animales , Ratones , Apoptosis , eIF-2 Quinasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Respuesta de Proteína Desplegada
7.
Biochem Biophys Res Commun ; 738: 150559, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39182355

RESUMEN

Cancer cells communicate within the tumor microenvironment (TME) through extracellular vesicles (EVs), which act as crucial messengers in intercellular communication, transporting biomolecules to facilitate cancer progression. Ubiquitin-like 3 (UBL3) facilitates protein sorting into small EVs as a post-translational modifier. However, the effect of UBL3 overexpression in EV-mediated protein secretion has not been investigated yet. This study aimed to investigate the effect of UBL3 overexpression in enhancing EV-mediated Achilles protein secretion in MDA-MB-231 (MM) cells by a dual-reporter system integrating Akaluc and Achilles tagged with Ubiquitin where self-cleaving P2A linker connects Akaluc and Achilles. MM cells stably expressing Ubiquitin-Akaluc-P2A-Achilles (Ubi-Aka/Achi) were generated. In our study, both the bioluminescence of Ubiquitin-Akaluc (Ubi-Aka) and the fluorescence of Achilles secretion were observed. The intensity of Ubi-Aka was thirty times lower, while the Achilles was four times lower than the intensity of corresponding cells. The ratio of Ubi-Aka and Achilles in conditioned media (CM) was 7.5. They were also detected within EVs using an EV uptake luciferase assay and fluorescence imaging. To investigate the effect of the UBL3 overexpression in CM, Ubi-Aka/Achi was transiently transfected into MM-UBL3-KO, MM, and MM-Flag-UBL3 cells. We found that the relative fluorescence expression of Achilles in CM of MM-UBL3-KO, MM, and MM-Flag-UBL3 cells was 30 %, 28 %, and 45 %, respectively. These findings demonstrated that UBL3 overexpression enhances EV-mediated Achilles protein secretion in CM of MM cells. Targeting UBL3 could lead to novel therapies for cancer metastasis by reducing the secretion of pro-metastatic proteins, thereby inhibiting disease progression.

8.
Cell Mol Life Sci ; 80(2): 56, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729310

RESUMEN

In macroautophagy, the autophagosome (AP) engulfs portions of cytoplasm to allow their lysosomal degradation. AP formation in humans requires the concerted action of the ATG12 and LC3/GABARAP conjugation systems. The ATG12-ATG5-ATG16L1 or E3-like complex (E3 for short) acts as a ubiquitin-like E3 enzyme, promoting LC3/GABARAP proteins anchoring to the AP membrane. Their role in the AP expansion process is still unclear, in part because there are no studies comparing six LC3/GABARAP family member roles under the same conditions, and also because the full human E3 was only recently available. In the present study, the lipidation of six members of the LC3/GABARAP family has been reconstituted in the presence and absence of E3, and the mechanisms by which E3 and LC3/GABARAP proteins participate in vesicle tethering and fusion have been investigated. In the absence of E3, GABARAP and GABARAPL1 showed the highest activities. Differences found within LC3/GABARAP proteins suggest the existence of a lipidation threshold, lower for the GABARAP subfamily, as a requisite for tethering and inter-vesicular lipid mixing. E3 increases and speeds up lipidation and LC3/GABARAP-promoted tethering. However, E3 hampers LC3/GABARAP capacity to induce inter-vesicular lipid mixing or subsequent fusion, presumably through the formation of a rigid scaffold on the vesicle surface. Our results suggest a model of AP expansion in which the growing regions would be areas where the LC3/GABARAP proteins involved should be susceptible to lipidation in the absence of E3, or else a regulatory mechanism would allow vesicle incorporation and phagophore growth when E3 is present.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Humanos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagosomas/metabolismo , Lípidos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia/genética
9.
Biochem J ; 480(19): 1583-1598, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747814

RESUMEN

Inclusion body formation is associated with cytotoxicity in a number of neurodegenerative diseases. However, the molecular basis of the toxicity caused by the accumulation of aggregation-prone proteins remains controversial. In this study, we found that disease-associated inclusions induced by elongated polyglutamine chains disrupt the complex formation of BAG6 with UBL4A, a mammalian homologue of yeast Get5. UBL4A also dissociated from BAG6 in response to proteotoxic stresses such as proteasomal inhibition and mitochondrial depolarization. These findings imply that the cytotoxicity of pathological protein aggregates might be attributed in part to disruption of the BAG6-UBL4A complex that is required for the biogenesis of tail-anchored proteins.


Asunto(s)
Cuerpos de Inclusión , Chaperonas Moleculares , Estrés Proteotóxico , Ubiquitinas , Animales , Chaperonas Moleculares/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Cuerpos de Inclusión/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 1034-1043, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38655618

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ligase complex in which the ubiquitin-like (UBL) domains of SHARPIN and HOIL-1L interact with HOIP to determine the structural stability of LUBAC. The interactions between subunits within LUBAC have been a topic of extensive research. However, the impact of the LTM motif on the interaction between the UBL domains of SHARPIN and HOIL-1L with HOIP remains unclear. Here, we discover that the absence of the LTM motif in the AlphaFold2-predicted LUBAC structure alters the HOIP-UBA structure. We employ GeoPPI to calculate the changes in binding free energy (ΔG) caused by single-point mutations between subunits, simulating their protein-protein interactions. The results reveal that the presence of the LTM motif decreases the interaction between the UBL domains of SHARPIN and HOIL-1L with HOIP, leading to a decrease in the structural stability of LUBAC. Furthermore, using the AlphaFold2-predicted results, we find that HOIP (629‒695) and HOIP-UBA bind to both sides of HOIL-1L-UBL, respectively. The experiments of Gromacs molecular dynamics simulations, SPR and ITC demonstrate that the elongated domain formed by HOIP (629‒695) and HOIP-UBA, hereafter referred to as the HOIP (466‒695) structure, interacts with HOIL-1L-UBL to form a structurally stable complex. These findings illustrate the collaborative interaction between HOIP-UBA and HOIP (629‒695) with HOIL-1L-UBL, which influences the structural stability of LUBAC.


Asunto(s)
Unión Proteica , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/genética , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Ubiquitinas
11.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612889

RESUMEN

The ubiquitin-proteasome system (UPS) is a pivotal cellular mechanism responsible for the selective degradation of proteins, playing an essential role in proteostasis, protein quality control, and regulating various cellular processes, with ubiquitin marking proteins for degradation through a complex, multi-stage process. The shuttle proteins family is a very unique group of proteins that plays an important role in the ubiquitin-proteasome system. Ddi1, Dsk2, and Rad23 are shuttle factors that bind ubiquitinated substrates and deliver them to the 26S proteasome. Besides mediating the delivery of ubiquitinated proteins, they are also involved in many other biological processes. Ddi1, the least-studied shuttle protein, exhibits unique physicochemical properties that allow it to play non-canonical functions in the cells. It regulates cell cycle progression and response to proteasome inhibition and defines MAT type of yeast cells. The Ddi1 contains UBL and UBA domains, which are crucial for binding to proteasome receptors and ubiquitin respectively, but also an additional domain called RVP. Additionally, much evidence has been provided to question whether Ddi1 is a classical shuttle protein. For many years, the true nature of this protein remained unclear. Here, we highlight the recent discoveries, which shed new light on the structure and biological functions of the Ddi1 protein.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Citoplasma , Proteínas Ubiquitinadas , División Celular , Saccharomyces cerevisiae
12.
Plant Biotechnol J ; 21(8): 1560-1576, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37140026

RESUMEN

RAD23 (RADIATION SENSITIVE23) proteins are a group of UBL-UBA (ubiquitin-like-ubiquitin-associated) proteins that shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Drought stress is a major environmental constraint that limits plant growth and production, but whether RAD23 proteins are involved in this process is unclear. Here, we demonstrated that a shuttle protein, MdRAD23D1, mediated drought response in apple plants (Malus domestica). MdRAD23D1 levels increased under drought stress, and its suppression resulted in decreased stress tolerance in apple plants. Through in vitro and in vivo assays, we demonstrated that MdRAD23D1 interacted with a proline-rich protein MdPRP6, resulting in the degradation of MdPRP6 by the 26S proteasome. And MdRAD23D1 accelerated the degradation of MdPRP6 under drought stress. Suppression of MdPRP6 resulted in enhanced drought tolerance in apple plants, mainly because the free proline accumulation is changed. And the free proline is also involved in MdRAD23D1-mediated drought response. Taken together, these findings demonstrated that MdRAD23D1 and MdPRP6 oppositely regulated drought response. MdRAD23D1 levels increased under drought, accelerating the degradation of MdPRP6. MdPRP6 negatively regulated drought response, probably by regulating proline accumulation. Thus, "MdRAD23D1-MdPRP6" conferred drought stress tolerance in apple plants.


Asunto(s)
Malus , Ubiquitina , Ubiquitina/metabolismo , Proteínas Portadoras , Malus/genética , Proteínas de Plantas/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674743

RESUMEN

Ubiquitin-like proteins (Ubls) are involved in a variety of biological processes through the modification of proteins. Dysregulation of Ubl modifications is associated with various diseases, especially cancer. Ubiquitin-like protein 3 (UBL3), a type of Ubl, was revealed to be a key factor in the process of small extracellular vesicle (sEV) protein sorting and major histocompatibility complex class II ubiquitination. A variety of sEV proteins that affects cancer properties has been found to interact with UBL3. An increasing number of studies has implied that UBL3 expression affects cancer cell growth and cancer prognosis. In this review, we provide an overview of the relationship between various Ubls and cancers. We mainly introduce UBL3 and its functions and summarize the current findings of UBL3 and examine its potential as a therapeutic target in cancers.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinación , Proteínas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo , Procesamiento Proteico-Postraduccional
14.
Cell Struct Funct ; 47(1): 1-18, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197392

RESUMEN

Ubiquitin-like 3 (UBL3) is a well-conserved ubiquitin-like protein (UBL) in eukaryotes and regulates the ubiquitin cascade, but the significant roles of UBL3 in cellular processes remained unknown. Recently, UBL3 was elucidated to be a post-translational modification factor that promotes protein sorting to small extracellular vesicles (sEVs). Proteins sorted into sEVs have been studied as etiologies of sEV-related diseases. Also, there have been attempts to construct drug delivery systems (DDSs) by loading proteins into sEVs. In this review, we introduce the new concept that UBL3 has a critical role in the protein-sorting system and compare structure conservation between UBL3 and other UBLs from an evolutionary perspective. We conclude with future perspectives for the utility of UBL3 in sEV-related diseases and DDS.Key words: UBL3, small extracellular vesicles, protein sorting, ubiquitin-like protein, post-translational modification.


Asunto(s)
Vesículas Extracelulares , Ubiquitinas/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Ubiquitina/metabolismo , Ubiquitinas/genética
15.
J Biol Chem ; 296: 100450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617881

RESUMEN

Proteasome-mediated substrate degradation is an essential process that relies on the coordinated actions of ubiquitin (Ub), shuttle proteins containing Ub-like (UBL) domains, and the proteasome. Proteinaceous substrates are tagged with polyUb and shuttle proteins, and these signals are then recognized by the proteasome, which subsequently degrades the substrate. To date, three proteasomal receptors have been identified, as well as multiple shuttle proteins and numerous types of polyUb chains that signal for degradation. While the components of this pathway are well-known, our understanding of their interplay is unclear-especially in the context of Rpn1, the largest proteasomal subunit. Here, using nuclear magnetic resonance (NMR) spectroscopy in combination with competition assays, we show that Rpn1 associates with UBL-containing proteins and polyUb chains, while exhibiting a preference for shuttle protein Rad23. Rpn1 appears to contain multiple Ub/UBL-binding sites, theoretically as many as one for each of its hallmark proteasome/cyclosome repeats. Remarkably, we also find that binding sites on Rpn1 can be shared among Ub and UBL species, while proteasomal receptors Rpn1 and Rpn10 can compete with each other for binding of shuttle protein Dsk2. Taken together, our results rule out the possibility of exclusive recognition sites on Rpn1 for individual Ub/UBL signals and further emphasize the complexity of the redundancy-laden proteasomal degradation pathway.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Unión Proteica , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo
16.
J Biol Chem ; 297(3): 101052, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34364874

RESUMEN

The ubiquitin (Ub)-proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy-in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent-exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub-proteasome system.


Asunto(s)
Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Poliubiquitina/química , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/química
17.
FASEB J ; 35(12): e21898, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34727385

RESUMEN

Toxoplasma gondii is an obligate intracellular apicomplexan parasite causing lethal diseases in immunocompromised patients. UBL-UBA shuttle proteins (DDI1, RAD23, and DSK2) are important components of the ubiquitin-proteasome system. By degrading ubiquitinated proteins, UBL-UBA shuttle proteins regulate many cellular processes. However, the specific processes regulated by UBL-UBA shuttle proteins remain elusive. Here, we revealed that the deletion of shuttle proteins results in a selective accumulation of ubiquitinated proteins in the nucleus and aberrant DNA replication. ROP18 was mistargeted and accumulated in the shuttle protein mutant strain, resulting in the recruitment of immunity-related GTPases to the parasitophorous vacuole membrane (PVM). Furthermore, the mistargeting of ROP18 and the recruitment of Irgb6 to the PVM were also observed in the DDI1 mutant strain. DDI1 is a nonclassical UBL-UBA shuttle protein homologous to the HIV-1 protease. Molecular docking showed that DDI1 was a potential target of HIV-1 protease inhibitors. However, these inhibitors blocked the growth of T gondii in vitro but not in vivo. In conclusion, the Toxoplasma UBL-UBA shuttle protein regulates several important cellular processes and the mistargeting of ROP18 may be a representative of the abnormal homeostasis caused by shuttle protein mutation.


Asunto(s)
Indinavir/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Animales , Replicación del ADN , Femenino , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
18.
Biochem J ; 478(13): 2555-2569, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34109974

RESUMEN

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Multimerización de Proteína , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Immunoblotting , Microscopía Fluorescente , Mutación , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Difracción de Rayos X
19.
FASEB J ; 34(10): 13711-13725, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808330

RESUMEN

Toxoplasma gondii is an obligate intracellular apicomplexan parasite that causes lethal diseases in immunocompromised patients. Ubiquitin-proteasome system (UPS) regulates many cellular processes by degrading ubiquitinylated proteins. The UBL-UBA shuttle protein family, which escorts the ubiquitinylated proteins to the proteasome for degradation, are crucial components of UPS. Here, we identified three UBL-UBA shuttle proteins (TGGT1_304680, DNA damage inducible protein 1, DDI1; TGGT1_295340, UV excision repair protein rad23 protein, RAD23; and TGGT1_223680, ubiquitin family protein, DSK2) localized in the cytoplasm and nucleus of T gondii. Deletion of shuttle proteins inhibited parasites growth and resulted in accumulation of ubiquitinylated proteins. Cell division of triple-gene knockout strain was asynchronous. In addition, we found that the retroviral aspartic protease activity of the nonclassical shuttle protein DDI1 was important for the virulence of Toxoplasma in mice. These results showed the critical roles of UBL-UBA shuttle proteins in regulating the degradation of ubiquitinylated proteins and cell division of T gondii.


Asunto(s)
División Celular , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Ubiquitinas/metabolismo , Animales , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Proteolisis , Proteínas Protozoarias/genética , Toxoplasma/patogenicidad , Ubiquitinación , Ubiquitinas/genética , Virulencia/genética
20.
Curr Rheumatol Rep ; 23(8): 62, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34216299

RESUMEN

PURPOSE OF REVIEW: To date, a vast amount of information regarding ubiquitination (Ub) and ubiquitylation-like (Ubl) modification-related mechanisms has been reported in the context of skeletal cell homeostasis and diseases. In this review, we mainly focus on recent findings regarding the contribution of enzymatic machinery that directly adds or removes Ub and Ubl modifications from protein targets in chondrocyte homeostasis and osteoarthritis (OA) development. RECENT FINDINGS: Mechanisms that promote homeostasis of articular chondrocytes are crucial for maintaining the integrity of articular joints to prevent osteoarthritis development. Articular chondrocytes are postmitotic cells that continuously produce and remodel cartilage matrix. In addition, the long lifespan of chondrocytes makes them susceptible to accumulating cellular damage. Ub and the evolutionarily conserved Ubl modifications, such as SUMOylation, ATGylation, and UFMylation, play important roles in promoting chondrocyte homeostasis, including regulating cell signaling and protein stability, resolving cellular stresses and inflammation, and maintaining differentiation and survival of chondrocytes. Uncovering new components/functions of Ub/Ubl modification machinery may provide novel drug targets to treat OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Condrocitos , Homeostasis , Humanos , Ubiquitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA