Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(19): 3677-3692.e11, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36044902

RESUMEN

The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Liposomas/metabolismo , Mamíferos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
2.
Mol Cell ; 81(24): 5066-5081.e10, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34798055

RESUMEN

Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.


Asunto(s)
Autofagosomas/enzimología , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagosomas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo
3.
Semin Cell Dev Biol ; 132: 16-26, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35764457

RESUMEN

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Asunto(s)
COVID-19 , Interferones , Humanos , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Antivirales , Poliproteínas , Inmunidad , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitina Tiolesterasa
4.
EMBO J ; 39(19): e105087, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901956

RESUMEN

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Asunto(s)
Nucleotidiltransferasas/química , ARN de Transferencia/química , Azufre/química , Sulfurtransferasas/química , Ubiquitinas/química , Humanos , Nucleotidiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Ubiquitinas/metabolismo
5.
Development ; 146(2)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30635284

RESUMEN

Protein modification by ubiquitin and ubiquitin-like proteins (UBLs) regulates numerous biological functions. The UFM1 system, a novel UBL conjugation system, is implicated in mouse development and hematopoiesis. However, its broad biological functions and working mechanisms remain largely elusive. CDK5RAP3, a possible ufmylation substrate, is essential for epiboly and gastrulation in zebrafish. Herein, we report a crucial role of CDK5RAP3 in liver development and hepatic functions. Cdk5rap3 knockout mice displayed prenatal lethality with severe liver hypoplasia, as characterized by delayed proliferation and compromised differentiation. Hepatocyte-specific Cdk5rap3 knockout mice suffered post-weaning lethality, owing to serious hypoglycemia and impaired lipid metabolism. Depletion of CDK5RAP3 triggered endoplasmic reticulum stress and activated unfolded protein responses in hepatocytes. We detected the in vivo interaction of CDK5RAP3 with UFL1, the defined E3 ligase in ufmylation. Notably, loss of CDK5RAP3 altered the ufmylation profile in liver cells, suggesting that CDK5RAP3 serves as a novel substrate adaptor for this UBL modification. Collectively, our study identifies CDK5RAP3 as an important regulator of ufmylation and suggests the involvement of ufmylation in mammalian development.


Asunto(s)
Hígado/embriología , Hígado/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Pérdida del Embrión/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/patología , Ratones Noqueados , Unión Proteica , Especificidad por Sustrato , Proteínas Supresoras de Tumor
6.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563444

RESUMEN

Post-translational modification (PTM) is an essential mechanism for enhancing the functional diversity of proteins and adjusting their signaling networks. The reversible conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins is among the most prevalent PTM, which modulates various cellular and physiological processes by altering the activity, stability, localization, trafficking, or interaction networks of its target molecules. The Ub/Ubl modification is tightly regulated as a multi-step enzymatic process by enzymes specific to this family. There is growing evidence that the dysregulation of Ub/Ubl modifications is associated with various diseases, providing new targets for drug development. In this review, we summarize the recent progress in understanding the roles and therapeutic targets of the Ub and Ubl systems in the onset and progression of human diseases, including cancer, neurodegenerative disorders, and heart diseases.


Asunto(s)
Cardiopatías , Neoplasias , Enfermedades Neurodegenerativas , Ubiquitina , Ubiquitinas , Cardiopatías/metabolismo , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430960

RESUMEN

A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Humanos , Ubiquitinación , Ubiquitina/metabolismo , Proteínas/metabolismo , Homeostasis
8.
J Struct Biol ; 213(4): 107796, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34508858

RESUMEN

Ubiquitin fold modifier 1 (UFM1) is an ubiquitin-like protein (Ubl) involved especially in endoplasmic stress response. Activation occurs via a three-step mechanism like other Ubls. Data obtained reveal that UFM1 regulates the oligomeric state of ubiquitin activating enzyme 5 (UBA5) to initiate the activation step. Mixtures of homodimers and heterotrimers are observed in solution at the equilibrium state, demonstrating that the UBA5-UFM1 complex undergoes several concentration dependent oligomeric translational states to form a final functional complex. The oligomerization state of unbound UBA5 is also concentration dependent and shifts from the monomeric to the dimeric state. Data describing different oligomeric states are complemented with binding studies that reveal a negative cooperativity for the complex formation and thereby provide more detailed insights into the complex formation mechanism.


Asunto(s)
Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Conformación Proteica , Multimerización de Proteína , Proteínas/química , Enzimas Activadoras de Ubiquitina/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Difracción de Rayos X
9.
J Cell Physiol ; 234(5): 5507-5518, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30317575

RESUMEN

The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.


Asunto(s)
Citocinas/metabolismo , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Estabilidad Proteica , Proteolisis , Sumoilación , Proteína p53 Supresora de Tumor/genética , Ubiquitinación/efectos de los fármacos
10.
Curr Genet ; 64(4): 777-784, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29299619

RESUMEN

The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.


Asunto(s)
Empalme Alternativo/genética , Intrones/genética , Precursores del ARN/genética , Empalme del ARN/genética , Proteínas de Unión al ADN/genética , Humanos , Estabilidad del ARN/genética , Schizosaccharomyces/genética , Empalmosomas/genética , Ubiquitina/genética
11.
Adv Exp Med Biol ; 963: 249-257, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197917

RESUMEN

The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Drosophila melanogaster/crecimiento & desarrollo
12.
Exp Cell Res ; 324(2): 192-9, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24726913

RESUMEN

The neural cell adhesion molecule NCAM is implicated in different neurodevelopmental processes and in synaptic plasticity in adult brain. The cytoplasmic domain of NCAM interacts with several cytoskeletal proteins and signaling molecules. To identify novel interaction partners of the cytosolic domain of NCAM a protein macroarray has been performed. We identified the ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) as an interaction partner of NCAM140. Ufc1 is one of the enzymes involved in modification of proteins with the ubiquitin-like molecule ubiquitin-fold modifier-1 (Ufm1). We also observed a partial co-localization of NCAM140 with Ufc1 and Ufm1 and increased endocytosis of NCAM140 in the presence of Ufm1 suggesting a possible ufmylation of NCAM140 and a potential novel function of Ufm1 for cell surface proteins.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Células COS , Moléculas de Adhesión Celular Neuronal/química , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , Endocitosis/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Enzimas Ubiquitina-Conjugadoras/química
13.
J Biol Chem ; 288(21): 14716-26, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23589306

RESUMEN

The bacterial effector protein cycle inhibiting factor (CIF) converts glutamine 40 of NEDD8 to glutamate (Q40E), causing cytopathic effects and inhibiting cell proliferation. Although these have been attributed to blocking the functions of cullin-RING ubiquitin ligases, how CIF modulates NEDD8-dependent signaling is unclear. Here we use conditional NEDD8-dependent yeast to explore the effects of CIF on cullin neddylation. Although CIF causes cullin deneddylation and the generation of free NEDD8 Q40E, inhibiting the COP9 signalosome (CSN) allows Q40E to form only on NEDD8 attached to cullins. In the presence of the CSN, NEDD8 Q40E is removed from cullins more rapidly than NEDD8, leading to a decrease in steady-state cullin neddylation. As NEDD8 Q40E is competent for cullin conjugation in the absence of functional CSN and with overexpression of the NEDD8 ligase Dcn1, our data are consistent with NEDD8 deamidation causing enhanced deneddylation of cullins by the CSN. This leads to a dramatic change in the extent of activated cullin-RING ubiquitin ligases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Cullin/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Proteínas Bacterianas/genética , Complejo del Señalosoma COP9 , Proteínas Cullin/genética , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína NEDD8 , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/genética
14.
Acta Trop ; 257: 107283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955322

RESUMEN

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.


Asunto(s)
Transducción de Señal , Toxoplasma , Toxoplasmosis , Ubiquitina , Toxoplasma/metabolismo , Toxoplasma/fisiología , Toxoplasma/efectos de los fármacos , Ubiquitina/metabolismo , Humanos , Toxoplasmosis/parasitología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/metabolismo , Animales , Proteínas Protozoarias/metabolismo , Ubiquitinación , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo , Estadios del Ciclo de Vida
15.
Proteomics ; 13(17): 2579-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23828837

RESUMEN

The identification of ubiquitin (Ub) and Ub-like protein (Ubl) conjugation sites is important in understanding their roles in biological pathway regulations. However, unambiguously and sensitively identifying Ub/Ubl conjugation sites through high-throughput MS remains challenging. We introduce an improved workflow for identifying Ub/Ubl conjugation sites based on the ChopNSpice and X!Tandem software. ChopNSpice is modified to generate Ub/Ubl conjugation peptides in the form of a cross-link. A combinatorial FASTA database can be acquired using the modified ChopNSpice (MchopNSpice). The modified X!Tandem (UblSearch) introduces a new fragmentation model for the Ub/Ubl conjugation peptides to match unambiguously the MS/MS spectra with linear peptides or Ub/Ubl conjugation peptides using the combinatorial FASTA database. The novel workflow exhibited better performance in analyzing an Ub and Ubl spectral library and a large-scale Trypanosoma cruzi small Ub-related modifier dataset compared with the original ChopNSpice method. The proposed workflow is more suitable for processing large-scale MS datasets of Ub/Ubl modification. MchopNSpice and UblSearch are freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/maublsearch.


Asunto(s)
Análisis de Secuencia de Proteína/métodos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Programas Informáticos , Ubiquitina/metabolismo , Sitios de Unión , Bases de Datos de Proteínas , Unión Proteica , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/análisis , Espectrometría de Masas en Tándem/estadística & datos numéricos , Trypanosoma cruzi/metabolismo , Ubiquitina/análisis , Flujo de Trabajo
16.
Cells ; 12(21)2023 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947621

RESUMEN

Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Animales , Humanos , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Mamíferos/metabolismo
17.
Autophagy ; 19(4): 1361-1362, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36095076

RESUMEN

Conjugation of Atg8-family proteins to phosphatidylethanolamine (PE) is important for autophagosome formation. PE conjugation has been thought to be specific to Atg8 among the ubiquitin-family proteins. However, this dogma has not been experimentally verified. Our recent study revealed that ubiquitin is also conjugated to PE on endosomes and the vacuole (or lysosomes). Other ubiquitin-like proteins, such as NEDD8 and ISG15, also covalently bind to phospholipids. We propose that conjugation to phospholipids could be a common feature of the ubiquitin family.


Asunto(s)
Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Ubiquitinas , Ubiquitina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia
18.
Trends Cell Biol ; 33(11): 991-1003, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37120410

RESUMEN

The covalent attachment of ubiquitin is a common regulatory mechanism in various proteins. Although it has long been thought that the substrates of ubiquitination are limited to proteins, recent studies have changed this view: ubiquitin can be conjugated to lipids, sugars, and nucleotides. Ubiquitin is linked to these substrates by the action of different classes of ubiquitin ligases that have distinct catalytic mechanisms. Ubiquitination of non-protein substrates likely serves as a signal for the recruitment of other proteins to bring about specific effects. These discoveries have expanded the concept of ubiquitination and have advanced our insight into the biology and chemistry of this well-established modification process. In this review we describe the molecular mechanisms and roles of non-protein ubiquitination and discuss the current limitations.

19.
Methods Mol Biol ; 2602: 51-61, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36446966

RESUMEN

Solid-phase peptide synthesis (SPPS) enables the synthesis of chemically modified peptides and proteins. Chemically synthesized ubiquitin(-like) proteins containing a fluorescent tag or reactive warhead have proven to be important tools in elucidating biological processes. Here, we describe the first fully synthetic method for the linear synthesis of two LC3 ubiquitin-like proteins using disaggregating building blocks and heated synthesis. Both LC3A and LC3B were synthesized and equipped with a fluorescent rhodamine tag, followed by folding of the proteins and liquid chromatography-mass spectrometry and SDS-PAGE analysis to prove that the quality of the synthetic material is comparable to expressed material.


Asunto(s)
Colorantes , Calor , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Cromatografía Liquida , Ubiquitinas
20.
Essays Biochem ; 66(2): 99-110, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35766526

RESUMEN

Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.


Asunto(s)
Arabidopsis , Ubiquitina , Arabidopsis/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA