RESUMEN
Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Citoplasma/metabolismo , Transporte de Proteínas , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores de Superficie Celular/metabolismoRESUMEN
Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.
Asunto(s)
Autofagosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Saccharomyces cerevisiae/citologíaRESUMEN
A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.
Asunto(s)
Miosina Tipo V/metabolismo , Vacuolas/metabolismo , Levaduras/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Fúngicas/metabolismo , Miosina Tipo V/genética , Fosforilación , Transporte de Proteínas , Proteolisis , UbiquitinaciónRESUMEN
Formation of the nucleus-vacuole junction (NVJ) is mediated by direct interaction between the vacuolar protein Vac8p and the outer nuclear endoplasmic reticulum membrane protein Nvj1p. Herein we report the crystal structure of Vac8p bound to Nvj1p at 2.4-Å resolution. Vac8p comprises a flexibly connected N-terminal H1 helix followed by 12 armadillo repeats (ARMs) that form a right-handed superhelical structure. The extended 80-Å-long loop of Nvj1p specifically binds the highly conserved inner groove formed from ARM1-12 of Vac8p. Disruption of the Nvj1p-Vac8p interaction results in the loss of tight NVJs, which impairs piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae Vac8p cationic triad (Arg276, Arg317, and Arg359) motifs interacting with Nvj1p are also critical to the recognition of Atg13p, a key component of the cytoplasm-to-vacuole targeting (CVT) pathway, indicating competitive binding to Vac8p. Indeed, mutation of the cationic triad abolishes CVT of Ape1p in vivo. Combined with biochemical data, the crystal structure reveals a Vac8p homodimer formed from ARM1, and this self-association, likely regulated by the flexible H1 helix and the C terminus of Nvj1p, is critical for Vac8p cellular functions.
Asunto(s)
Núcleo Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Unión Competitiva , Cristalografía por Rayos X , Citoplasma/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencias Repetitivas de Aminoácido , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
The lipid droplet (LD) organization proteins Ldo16 and Ldo45 affect multiple aspects of LD biology in yeast. They are linked to the LD biogenesis machinery seipin, and their loss causes defects in LD positioning, protein targeting, and breakdown. However, their molecular roles remained enigmatic. Here, we report that Ldo16/45 form a tether complex with Vac8 to create vacuole lipid droplet (vCLIP) contact sites, which can form in the absence of seipin. The phosphatidylinositol transfer protein (PITP) Pdr16 is a further vCLIP-resident recruited specifically by Ldo45. While only an LD subpopulation is engaged in vCLIPs at glucose-replete conditions, nutrient deprivation results in vCLIP expansion, and vCLIP defects impair lipophagy upon prolonged starvation. In summary, Ldo16/45 are multifunctional proteins that control the formation of a metabolically regulated contact site. Our studies suggest a link between LD biogenesis and breakdown and contribute to a deeper understanding of how lipid homeostasis is maintained during metabolic challenges.
Asunto(s)
Gotas Lipídicas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Gotas Lipídicas/metabolismo , Vacuolas/metabolismo , Proteínas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismoRESUMEN
Macroautophagy/autophagy is special because the double-layer lipid-formed autophagosome is formed by de novo generation. Phosphatidylinositol-3-phosphate (PtdIns3P) produced by class III phosphatidylinositol 3-kinase complex I (PtdIns3K-CI) is an essential source lipid for the formation of autophagosomes. However, how autophagy is initiated is unknown. In other words, the mechanism by which PtdIns3K-CI is recruited to the phagophore assembly site (PAS) to initiate autophagosome formation is unclear. We recently uncovered the pivotal role of yeast Vac8 in autophagy initiation through the recruitment of PtdIns3K-CI to the PAS. N-terminal palmitoylation of Vac8 anchors it to the vacuole membrane, and the middle ARM domains bind PtdIns3K-CI, leading to the generation of PtdIns3P at the PAS and subsequent autophagosome formation. We found that mouse ARMC3 is the homolog of yeast Vac8 and that its autophagic roles are conserved. Interestingly, spermatids from mice with Armc3 deletion showed blocked ribophagy, low energy levels of mitochondria and motionless flagella, which caused male infertility. These findings revealed a germ tissue-specific autophagic function of ARMC3 in complex eukaryotic species.
Asunto(s)
Proteínas del Dominio Armadillo , Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas del Dominio Armadillo/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Masculino , Ratones , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Espermatogénesis , Proteínas de Transporte Vesicular/metabolismoRESUMEN
How autophagy initiation is regulated and what the functional significance of this regulation is are unknown. Here, we characterized the role of yeast Vac8 in autophagy initiation through recruitment of PIK3C3-C1 to the phagophore assembly site (PAS). This recruitment is dependent on the palmitoylation of Vac8 and on its middle ARM domains for binding PIK3C3-C1. Vac8-mediated anchoring of PIK3C3-C1 promotes PtdIns3P generation at the PAS and recruitment of the PtdIns3P binding protein Atg18-Atg2. The mouse homolog of Vac8, ARMC3, is conserved and functions in autophagy in mouse testes. Mice lacking ARMC3 have normal viability but show complete male infertility. Proteomic analysis indicated that the autophagic degradation of cytosolic ribosomes was blocked in ARMC3-deficient spermatids, which caused low energy levels of mitochondria and motionless flagella. These studies uncovered a function of Vac8/ARMC3 in PtdIns3-kinase anchoring at the PAS and its physical significance in mammalian spermatogenesis with a germ tissue-specific autophagic function.
Asunto(s)
Autofagia , Ribosomas/metabolismo , Cola del Espermatozoide/metabolismo , Espermatogénesis , Adulto , Animales , Autofagosomas/metabolismo , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Motilidad Espermática , Cola del Espermatozoide/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Membrane contact sites facilitate the exchange of metabolites between organelles to support interorganellar communication. The nucleus-vacuole junctions (NVJs) establish physical contact between the perinuclear endoplasmic reticulum (ER) and the vacuole. Although the NVJ tethers are known, how NVJ abundance and composition are controlled in response to metabolic cues remains elusive. Here, we identify the ER protein Snd3 as central factor for NVJ formation. Snd3 interacts with NVJ tethers, supports their targeting to the contacts, and is essential for NVJ formation. Upon glucose exhaustion, Snd3 relocalizes from the ER to NVJs and promotes contact expansion regulated by central glucose signaling pathways. Glucose replenishment induces the rapid dissociation of Snd3 from the NVJs, preceding the slow disassembly of the junctions. In sum, this study identifies a key factor required for formation and regulation of NVJs and provides a paradigm for metabolic control of membrane contact sites.
Asunto(s)
Núcleo Celular/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Transducción de SeñalRESUMEN
Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-Å extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Δ19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways. ABBREVIATIONS: Ape1: aminopeptidase I; ARM: armadillo repeat; Atg: autophagy-related; AUC: analytical ultracentrifugation; Cvt: cytoplasm-to-vacuole targeting; DIC: differential interference contrast; GFP: green fluorescent protein; GST: glutathione-S-transferase; ITC: isothermal titration calorimetry; NVJ: nucleus-vacuole junction; PDB: protein data bank; PMN: piecemeal microautophagy of the nucleus; prApe1: precursor Ape1; RMSD: root-mean-square deviation; SAXS: small-angle X-ray scattering; SD-N: nitrogen starvation medium; SEC: size-exclusion chromatography; tAtg13: Atg13 construct comprising residues 567-695; tNvj1: Nvj1 construct comprising residues 229-321; tVac8: Vac8 construct comprising residues 10-515; Vac8: vacuole related 8.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas del Dominio Armadillo/química , Proteínas Relacionadas con la Autofagia/química , Microautofagia/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Cromatografía Liquida , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Citoplasma/metabolismo , Dimerización , Enlace de Hidrógeno , Microautofagia/efectos de los fármacos , Conformación Proteica en Hélice alfa , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores Citoplasmáticos y Nucleares/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/farmacología , Espectrometría de Masas en Tándem , Vacuolas/efectos de los fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
Asunto(s)
Quinasa de la Caseína I/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fosforilación/fisiología , Unión Proteica , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae , Ubiquitinación/fisiologíaRESUMEN
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question. Here, we highlight recent studies that provide molecular insights into PAS organization and the role of the endoplasmic reticulum and the vacuole in autophagosome formation.
Asunto(s)
Autofagosomas/metabolismo , Células/metabolismo , Autofagia , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8ï strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.