Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.656
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2315688121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315857

RESUMEN

Integrating reactive radicals into membranes that resemble biological membranes has always been a pursuit for simultaneous organics degradation and water filtration. In this research, we discovered that a radical polymer (RP) that can directly trigger the oxidative degradation of sulfamethozaxole (SMX). Mechanistic studies by experiment and density functional theory simulations revealed that peroxyl radicals are the reactive species, and the radicals could be regenerated in the presence of O2. Furthermore, an interpenetrating RP network membrane consisting of polyvinyl alcohol and the RP was fabricated to demonstrate the simultaneous filtration of large molecules in the model wastewater stream and the degradation of ~ 85% of SMX with a steady permeation flux. This study offers valuable insights into the mechanism of RP-triggered advanced oxidation processes and provides an energy-efficient solution for the degradation of organic compounds and water filtration in wastewater treatment.

2.
Proc Natl Acad Sci U S A ; 121(29): e2403766121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38995964

RESUMEN

It is imperative to devise effective removal strategies for high ionization potential (IP) organic pollutants in wastewater as their reduced electron-donating capacity challenges the efficiency of advanced oxidation systems in degradation. Against this backdrop, leveraging the metal-based carbon material structure meticulously, we employed metal-pyridine-N (M-N-C, M=Fe, Co, and Ni) as the electron transfer bridge. This distinctive design facilitated the ordered transfer of electrons from the adsorbent surface to the surface of high IP value pollutants, acting as a "supplement" to compensate for their deficient electron-donating capability, thereby culminating in the selective adsorption of these pollutants. Furthermore, this adsorbent also demonstrated effective removal of trace emerging contaminants (2 mg/L), displayed robust resistance to various salts, exhibited reusability, and maintained stability. These findings carry substantial implications for future carbon-based material design, offering a pathway toward exceptional adsorption performance in treating water pollution.

3.
Proc Natl Acad Sci U S A ; 120(52): e2317174120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127984

RESUMEN

Converting spent lithium-ion batteries (LIBs) and industrial wastewater into high-value-added substances by advanced electrocatalytic technology is important for sustainable energy development and environmental protection. Here, we propose a self-powered system using a home-made sulfide fuel cell (SFC) to power a two-electrode electrocatalytic sulfion oxidation reaction (SOR)-assisted hydrogen (H2) production electrolyzer (ESHPE), in which the sulfion-containing wastewater is used as the liquid fuel to produce clean water, sulfur, and hydrogen. The catalysts for the self-powered system are mainly prepared from spent LIBs to reduce the cost, such as the bifunctional Co9S8 catalyst was prepared from spent LiCoO2 for SOR and hydrogen evolution reaction (HER). The Fe-N-P codoped coral-like carbon nanotube arrays encapsulated Fe2P (C-ZIF/sLFP) catalyst was prepared from spent LiFePO4 for oxygen reduction reaction. The Co9S8 catalyst shows excellent catalytic activities in both SOR and HER, evidenced by the low cell voltage of 0.426 V at 20 mA cm-2 in ESHPE. The SFC with Co9S8 as anode and C-ZIF/sLFP as cathode exhibits an open-circuit voltage of 0.69 V and long discharge stability for 300 h at 20 mA cm-2. By integrating the SFC and ESHPE, the self-powered system delivers an impressive hydrogen production rate of 0.44 mL cm-2 min-1. This work constructs a self-powered system with high-performance catalysts prepared from spent LIBs to transform sulfion-containing wastewater into purified water and prepare hydrogen, which is promising to achieve high economic efficiency, environmental remediation, and sustainable development.

4.
Nano Lett ; 24(38): 11929-11936, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264715

RESUMEN

Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.

5.
Small ; 20(37): e2311427, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733219

RESUMEN

MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.

6.
Small ; : e2406125, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246214

RESUMEN

A novel Fe-g-C3N4/Bi2MoO6 (FCNB) Z-scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo-Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density-functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe-N4 sites induces spin-polarization in the material, and the difference in Fermi energy levels results in the formation of built-in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into "non-toxic" compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.

7.
Appl Environ Microbiol ; 90(1): e0158523, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38117057

RESUMEN

Toxigenic Microcystis blooms periodically disrupt the stabilization ponds of wastewater treatment plants (WWTPs). Dense proliferations of Microcystis cells within the surface waters (SWs) impede the water treatment process by reducing the treatment efficacy of the latent WWTP microbiome. Further, water quality is reduced when conventional treatment leads to Microcystis cell lysis and the release of intracellular microcystins into the water column. Recurrent seasonal Microcystis blooms cause significant financial burdens for the water industry and predicting their source is vital for bloom management strategies. We investigated the source of recurrent toxigenic Microcystis blooms at Australia's largest lagoon-based municipal WWTP in both sediment core (SC) and SW samples between 2018 and 2020. Bacterial community composition of the SC and SW samples according to 16S rRNA gene amplicon sequencing showed that Microcystis sp. was dominant within SW samples throughout the period and reached peak relative abundances (32%) during the summer. The same Microcystis Amplicon sequence variants were present within the SC and SW samples indicating a potential migratory population that transitions between the sediment water and SWs during bloom formation events. To investigate the potential of the sediment to act as a repository of viable Microcystis cells for recurrent bloom formation, a novel in-vitro bloom model was established featuring sediments and sterilized SW collected from the WWTP. Microcystin-producing Microcystis blooms were established through passive resuspension after 12 weeks of incubation. These results demonstrate the capacity of Microcystis to transition between the sediments and SWs in WWTPs, acting as a perennial inoculum for recurrent blooms.IMPORTANCECyanobacterial blooms are prevalent to wastewater treatment facilities owing to the stable, eutrophic conditions. Cyanobacterial proliferations can disrupt operational procedures through the blocking of filtration apparatus or altering the wastewater treatment plant (WWTP) microbiome, reducing treatment efficiency. Conventional wastewater treatment often results in the lysis of cyanobacterial cells and the release of intracellular toxins which pose a health risk to end users. This research identifies a potential seeding source of recurrent toxigenic cyanobacterial blooms within wastewater treatment facilities. Our results demonstrate the capacity of Microcystis to transition between the sediments and surface waters (SWs) of wastewater treatment ponds enabling water utilities to develop adequate monitoring and management strategies. Further, we developed a novel model to demonstrate benthic recruitment of toxigenic Microcystis under laboratory conditions facilitating future research into the genetic mechanisms behind bloom development.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/genética , Estanques/microbiología , Aguas Residuales , ARN Ribosómico 16S , Cianobacterias/genética , Microcistinas/metabolismo
8.
Appl Environ Microbiol ; 90(8): e0059824, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995046

RESUMEN

Wastewater treatment plants (WWTPs) are host to diverse microbial communities and receive a constant influx of microbes from influent wastewater. However, the impact of immigrants on the structure and activities of the activated sludge (AS) microbial community remains unclear. To gain insight on this phenomenon known as perpetual community coalescence, the current study utilized controlled manipulative experiments that decoupled the influent wastewater composition from the microbial populations to reveal the fundamental mechanisms involved in immigration between sewers and AS-WWTP. The immigration dynamics of heterotrophs were analyzed by harvesting wastewater biomass solids from three different sewer systems and adding to synthetic wastewater. Immigrating influent populations were observed to contribute up to 14% of the sequencing reads in the AS. By modeling the net growth rate of taxa, it was revealed that immigrants primarily exhibited low or negative net growth rates. By developing a protocol to reproducibly grow AS-WWTP communities in the lab, we have laid down the foundational principles for the testing of operational factors creating community variations with low noise and appropriate replication. Understanding the processes that drive microbial community diversity and assembly is a key question in microbial ecology. In the future, this knowledge can be used to manipulate the structure of microbial communities and improve system performance in WWTPs.IMPORTANCEIn biological wastewater treatment processes, the microbial community composition is essential in the performance and stability of the system. This study developed a reproducible protocol to investigate the impact of influent immigration (or perpetual coalescence of the sewer and activated sludge communities) with appropriate reproducibility and controls, allowing intrinsic definitions of core and immigrant populations to be established. The method developed herein will allow sequential manipulative experiments to be performed to test specific hypothesis and optimize wastewater treatment processes to meet new treatment goals.


Asunto(s)
Bacterias , Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos
9.
Appl Environ Microbiol ; 90(9): e0217723, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39136491

RESUMEN

This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE: This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.


Asunto(s)
Metagenoma , Óxido Nitroso , Aguas Residuales , Óxido Nitroso/metabolismo , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Genoma Bacteriano , Eliminación de Residuos Líquidos , Dinamarca , Filogenia
10.
Appl Environ Microbiol ; : e0115824, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387558

RESUMEN

The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.

11.
BMC Microbiol ; 24(1): 39, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281910

RESUMEN

BACKGROUND: Water pollution has become a major environmental and health concern due to increasing population and industrialisation. Microbial flocculants are promising agents for treatment of contaminated water owing to their effectiveness, eco-friendliness, and high biosafety levels. In this study, culture conditions of Providencia huaxiensis OR794369.1 were optimised and its bioflocculant was extracted, characterised and used to treat wastewater. RESULTS: The maximum flocculating activity of 92% and yield of 3.5 g/L were obtained when cultivation conditions were: 3% inoculum size, starch, casein, initial pH of 6, cultivation temperature of 30 oC and 72 h of fermentation. The bioflocculant is an amorphous glycoprotein biomolecule with 37.5% carbohydrates, 27.9% protein, and 34.6% uronic acids. It is composed of hydroxyl, amino, alkanes, carboxylic acid and amines groups as its main functional structures. It was found to be safe to use as it demonstrated non-cytotoxic effects on bovine dermis and African green monkey kidney cells, illustrating median inhibitory concentration (IC50) values of 180 and > 500 µg/mL on both cell lines, respectively. It demonstrated the removal efficiencies of 90% on chemical oxygen demand (COD), 97% on biological oxygen demand (BOD) and 72% on Sulphur on coal mine wastewater. It also revealed the reduction efficacies of 98% (COD) and 92% (BOD) and 70% on Sulphur on domestic wastewater. CONCLUSION: The bioflocculant was effective in reducing pollutants and thus, illustrated potential to be used in wastewater treatment process as an alternative.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Animales , Bovinos , Chlorocebus aethiops , Aguas Residuales , Providencia , Floculación , Azufre , Concentración de Iones de Hidrógeno
12.
Crit Rev Biotechnol ; : 1-16, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485522

RESUMEN

Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.


The most recent development in microalgae biogranulation research is highlighted.Factors affecting microalgae granule development are discussed for the first time.Duration to develop granules is a crucial aspect that needs further research.Cultivation of single-species microalgae for rapid harvesting needs more attention.

13.
Chemistry ; : e202402924, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351813

RESUMEN

A theoretical model is proposed to study the oxidation mechanisms of the organic UV filters BP3 and BP4 during electrochemical water treatment utilizing Car-Parrinello molecular dynamics. Factors such as the amount of solvent to be included and how to design the system with the least possible intervention are discussed. The stages of the proposed model consist of the optimization of the geometries by density functional theory methods, the equilibration of the structure immersed in a water box, the inclusion of the reactive species, and the analysis of the reaction energies of each reaction pathway. The ab-initio molecular dynamics simulations lead to several products, and some trends can be identified, in accordance with the well-known reactivity rules of organic chemistry. The products proposed in this work are intermediates in longer oxidative pathways.

14.
Biotechnol Bioeng ; 121(5): 1486-1502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343183

RESUMEN

Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.


Asunto(s)
Chlorella vulgaris , Microalgas , Purificación del Agua , Humanos , Aguas Residuales , Biocombustibles , Biomasa
15.
Biotechnol Bioeng ; 121(3): 980-990, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088435

RESUMEN

Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/metabolismo , Alcaligenes/genética , Alcaligenes/metabolismo , Amoníaco/toxicidad , Amoníaco/metabolismo , Aguas Residuales , Nitrógeno/metabolismo , Desnitrificación , Oxidación-Reducción , Reactores Biológicos
16.
Arch Microbiol ; 206(8): 343, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967670

RESUMEN

Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.


Asunto(s)
Biodegradación Ambiental , Microalgas , Aguas Residuales , Microalgas/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Metales Pesados/metabolismo , Biomasa , Bacterias/metabolismo , Bacterias/genética , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
17.
Adv Appl Microbiol ; 128: 41-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059843

RESUMEN

The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.


Asunto(s)
Agricultura , Microalgas , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Aguas Residuales/química , Agricultura/métodos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Biomasa , Biodegradación Ambiental
18.
Artículo en Inglés | MEDLINE | ID: mdl-38885037

RESUMEN

Strain I65T (=KACC 22647T=JCM 35315T), a novel Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, rod-shaped, and orange-pigmented bacterium was isolated from influent water of a wastewater treatment system after treatment with several antibiotics, such as meropenem, gentamicin, and macrolide. The newly identified bacterial strain I65T exhibits significant multi-drug and heavy metal resistance characteristics. Strain I65T was grown in Reasoner's 2A medium [0 %-2 % (w/v) NaCl (optimum, 0 %), pH 5.0-10.0 (optimum, pH 7.0), and 20-45°C (optimum, 30 °C)]. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain I65T was closely related to Niabella yanshanensis CCBAU 05354T (99.56 % sequence similarity), Niabella hibiscisoli THG-DN5.5T (97.51 %), and Niabella ginsengisoli GR10-1T (97.09 %). Further analysis of the whole-genome sequence confirmed that the digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain I65T and N. yanshanensis CCBAU 05354T were 23.4, 80.7, and 85.0 %, respectively, suggesting that strain I65T is distinct from N. yanshanensis. The genome size of strain I65T was 6.1 Mbp, as assessed using the Oxford Nanopore platform, and its genomic DNA G+C content was 43.0 mol%. The major fatty acids of strain I65T were iso-C15 : 0 and iso-C15 : 1 G, and the major respiratory quinone was MK-7. Moreover, the major polar lipid of strain I65T was phosphatidylethanolamine. Based on genotypic, chemotaxonomic, and phenotype data, strain I65T represents a novel species belonging to the genus Niabella, for which the name Niabella defluvii sp. nov. is proposed. The type strain is I65T (=KACC 22647T=JCM 35315T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Aguas Residuales , Aguas Residuales/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/clasificación , Antibacterianos/farmacología , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfolípidos/análisis , Microbiología del Agua , Secuenciación Completa del Genoma
19.
Microb Cell Fact ; 23(1): 236, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192338

RESUMEN

INTRODUCTION: With rapid elevation in population, urbanization and industrialization, the environment is exposed to uncontrolled discharge of effluents filled with broad-spectrum toxicity, persistence and long-distance transmission anthropogenic compounds, among them heavy metals. That put our ecosystem on the verge or at a stake of drastic ecological deterioration, which eventually adversely influence on public health. Therefore, this study employed marine fungal strain Rhodotorula sp. MZ312369 for Zn2+ and Cr6+ remediation using the promising calcium carbonate (CaCO3) bioprecipitation technique, for the first time. RESULTS: Initially, Plackett-Burman design followed by central composite design were applied to optimize carbonic anhydrase enzyme (CA), which succeeded in enhancing its activity to 154 U/mL with 1.8-fold increase comparing to the basal conditions. The potentiality of our biofactory in remediating Zn2+ (50 ppm) and Cr6+ (400 ppm) was monitored through dynamic study of several parameters including microbial count, CA activity, CaCO3 weight, pH fluctuation, changing the soluble concentrations of Ca2+ along with Zn2+ and Cr6+. The results revealed that 9.23 × 107 ± 2.1 × 106 CFU/mL and 10.88 × 107 ± 2.5 × 106 CFU/mL of cells exhibited their maximum CA activity by 124.84 ± 1.24 and 140 ± 2.5 U/mL at 132 h for Zn2+ and Cr6+, respectively. Simultaneously, with pH increase to 9.5 ± 0.2, a complete removal for both metals was observed at 168 h; Ca2+ removal percentages recorded 78.99% and 85.06% for Zn2+ and Cr6+ remediating experiments, respectively. Further, the identity, elemental composition, functional structure and morphology of bioremediated precipitates were also examined via mineralogical analysis. EDX pattern showed the typical signals of C, O and Ca accompanying with Zn2+ and Cr6+ peaks. SEM micrographs depicted spindle, spherical and cubic shape bioliths with size range of 1.3 ± 0.5-23.7 ± 3.1 µm. Meanwhile, XRD difractigrams unveiled the prevalence of vaterite phase in remediated samples. Besides, FTIR profiles emphasized the presence of vaterite spectral peaks along with metals wavenumbers. CONCLUSION: CA enzyme mediated Zn2+ and Cr6+ immobilization and encapsulation inside potent vaterite trap through microbial biomineralization process, which deemed as surrogate ecofriendly solution to mitigate heavy metals toxicity and restrict their mobility in soil and wastewater.


Asunto(s)
Biodegradación Ambiental , Carbonato de Calcio , Anhidrasas Carbónicas , Cromo , Rhodotorula , Zinc , Zinc/metabolismo , Anhidrasas Carbónicas/metabolismo , Cromo/metabolismo , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Rhodotorula/enzimología , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/metabolismo
20.
Photochem Photobiol Sci ; 23(8): 1533-1542, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030314

RESUMEN

Removal of organic dyes like methylene blue (MB) from industrial effluents serves as potential source of potable water. Photocatalytic degradation using sustainable catalyst is deemed to be an affordable solution. In this work, Nd2O3/MgO nanocomposite with different compositions (1, 3, and 5wt% Nd2O3 with MgO) have been achieved using hydrothermal synthesis and characterized extensively. Interestingly, increasing Nd2O3 proportion (1-5%) enhances light absorption, and decreases band gap and electron-hole recombination. The efficacy of the photocatalysts is tested with the degradation of MB dye, through optimizing Nd2O3/MgO proportion, contact time, catalyst dose, and pH. Interestingly, control experiments reveal that 5wt% Nd2O3/MgO achieve 99.6% degradation of MB in 90 min at pH 7, compared to 88.8% with bare MgO under same condition. Kinetic data show that 5wt% Nd2O3/MgO exhibits ca. 3 times higher degradation rate compared to MgO. For the first time, our work enable MgO-based sustainable photocatalyst development with minimum (5 wt%) rare-earth combination to achieve excellent photocatalytic degradation performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA