Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941193

RESUMEN

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Asunto(s)
Proliferación Celular , Endometrio , Cabras , Mitocondrias , Zearalenona , Animales , Femenino , Endometrio/citología , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Zearalenona/toxicidad , Zearalenona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Cultivadas , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/citología
2.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38332488

RESUMEN

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Asunto(s)
Micotoxinas , Zearalenona , Zeranol , Humanos , Animales , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutación Puntual , Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Micotoxinas/metabolismo
3.
BMC Microbiol ; 24(1): 75, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454365

RESUMEN

BACKGROUND: The mycotoxin zearalenone (ZEA) produced by toxigenic fungi is widely present in cereals and its downstream products. The danger of ZEA linked to various human health issues has attracted increasing attention. Thus, powerful ZEA-degrading or detoxifying strategies are urgently needed. Biology-based detoxification methods are specific, efficient, and environmentally friendly and do not lead to negative effects during cereal decontamination. Among these, ZEA detoxification using degrading enzymes was documented to be a promising strategy in broad research. Here, two efficient ZEA-degrading lactonases from the genus Gliocladium, ZHDR52 and ZHDP83, were identified for the first time. This work studied the degradation capacity and properties of ZEA using purified recombinant ZHDR52 and ZHDP83. RESULTS: According to the ZEA degradation study, transformed Escherichia coli BL21(DE3) PLySs cells harboring the zhdr52 or zhdp83 gene could transform 20 µg/mL ZEA within 2 h and degrade > 90% of ZEA toxic derivatives, α/ß-zearalanol and α/ß-zearalenol, within 6 h. Biochemical analysis demonstrated that the optimal pH was 9.0 for ZHDR52 and ZHDP83, and the optimum temperature was 45 °C. The purified recombinant ZHDR52 and ZHDP83 retained > 90% activity over a wide range of pH values and temperatures (pH 7.0-10.0 and 35-50 °C). In addition, the specific activities of purified ZHDR52 and ZHDP83 against ZEA were 196.11 and 229.64 U/mg, respectively. The results of these two novel lactonases suggested that, compared with ZHD101, these two novel lactonases transformed ZEA into different products. The slight position variations in E126 and H242 in ZDHR52/ZEA and ZHDP83/ZEA obtained via structural modelling may explain the difference in degradation products. Moreover, the MCF-7 cell proliferation assay indicated that the products of ZEA degradation using ZHDR52 and ZHDP83 did not exhibit estrogenic activity. CONCLUSIONS: ZHDR52 and ZHDP83 are alkali ZEA-degrading enzymes that can efficiently and irreversibly degrade ZEA into non-estrogenic products, indicating that they are potential candidates for commercial application. This study identified two excellent lactonases for industrial ZEA detoxification.


Asunto(s)
Gliocladium , Zearalenona , Zeranol/análogos & derivados , Humanos , Zearalenona/química , Gliocladium/metabolismo , Biotransformación
4.
Anal Bioanal Chem ; 416(4): 983-992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127274

RESUMEN

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.


Asunto(s)
Nanocompuestos , Zearalenona , Humanos , Zearalenona/análisis , Cobre/análisis , Contaminación de Alimentos/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , ADN de Cadena Simple , Límite de Detección
5.
Anal Bioanal Chem ; 416(13): 3173-3183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568232

RESUMEN

A certified reference material (CRM, KRISS 108-01-002) for zearalenone in corn flour was developed to assure reliable and accurate measurements in testing laboratories. Commercially available corn flour underwent freeze-drying, pulverization, sieving, and homogenization. The final product was packed in amber bottles, approximately 14 g per unit, and preserved at -70 °C. 13C18-Zearalenone was used as an internal standard (IS) for the certification of zearalenone by isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC‒MS/MS) and for the analysis of α-zearalenol, ß-zearalenol, and zearalanone by LC‒MS/MS. The prepared CRM was sufficiently homogeneous, as the among-unit relative standard deviation for each mycotoxin ranged from 2.2 to 5.7 %. Additionally, the stability of the mycotoxins in the CRM was evaluated under different temperature conditions and scheduled test periods, including storage at -70°C, -20°C, and 4°C and room temperature for up to 12 months, 6 months, and 1 month, respectively. The content of each target mycotoxin in the CRM remained stable throughout the monitoring period at each temperature. Zearalenone content (153.6 ± 8.0 µg/kg) was assigned as the certified value. Meanwhile, the contents of α-zearalenol (1.30 ± 0.17 µg/kg), ß-zearalenol (4.75 ± 0.33 µg/kg), and zearalanone (2.09 ± 0.16 µg/kg) were provided as informative values.


Asunto(s)
Harina , Estándares de Referencia , Espectrometría de Masas en Tándem , Zea mays , Zearalenona , Zearalenona/análisis , Zea mays/química , Harina/análisis , Harina/normas , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Límite de Detección , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados
6.
Environ Res ; 246: 118094, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176630

RESUMEN

Zearalenone (ZEN) is a mycotoxin found in food and feed that impairs the function of multiple organs, especially the liver. However, the specific mechanisms through which ZEN induces liver damage in broiler chickens are not well understood. Therefore, this study aimed to identify the key genes linked to the hepatotoxicity induced by ZEN exposure in broiler chickens. Gene expression data from ZEN-treated and control chicken embryo primary hepatocytes (CEPHs) were used to implement differential expression analysis. Totally, 436 differentially expressed genes (DEGs) were detected, in which 223 and 213 genes were up- and down-regulated in ZEN-treated CEPHs, respectively. Gene ontology analysis suggested that these DEGs were involved in various biological processes, including chromosome segregation, mitotic cytokinesis, mitotic cell cycle, cell division, and mitotic spindle organization. Pathway analysis showed that the DEGs were associated with p53, FoxO, ubiquitin-mediated proteolysis, cell cycle, and mismatch repair signaling pathways. Furthermore, the hub genes, including BRCA1, CDC45, CDCA3, CDKN3, CENPE, CENPF, CENPI, CENPM, CENPU, and CEP55, potentially contributed to ZEN-induced hepatotoxicity. In conclusion, our study provides the valuable insight into the mechanism underlying ZEN-induced hepatotoxicity in broiler chickens.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Micotoxinas , Zearalenona , Embrión de Pollo , Animales , Zearalenona/toxicidad , Zearalenona/metabolismo , Pollos/genética , Pollos/metabolismo , Micotoxinas/toxicidad , Antioxidantes/farmacología
7.
Ecotoxicol Environ Saf ; 277: 116343, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657456

RESUMEN

Curcumin (CUR) is a compound extracted from turmeric that has a variety of functions including antioxidant and anti-inflammatory. As an estrogen-like mycotoxin, zearalenone (ZEN) not only attacks the reproductive system, but also has toxic effects on the liver. However, whether CUR can alleviate ZEN-induced liver injury remains unclear. This paper aims to investigate the protective effect of CUR against ZEN-induced liver injury in mice and explore the molecular mechanism involved. BALB/c mice were randomly divided into control (CON) group, CUR group (200 mg/kg b. w. CUR), ZEN group (40 mg/kg b. w. ZEN) and CUR+ZEN group (200 mg/kg b. w. CUR+40 mg/kg b. w. ZEN). 28 d after ZEN exposure and CUR treatment, blood and liver samples were collected for subsequent testing. The results showed that CUR reversed ZEN-induced hepatocyte swelling and necrosis in mice. It significantly reduced the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice (p < 0.05). In addition, CUR significantly reduced hepatic ROS, malondialdehyde, hydrogen peroxide and apoptosis levels in mice (p < 0.05). Quantitative RT-PCR and Western blot results showed that CUR significantly reduced the expression of Bax and Caspase3, and reversed the increase of Nrf2, HO-1 and NQO1 expression in the liver of mice induced by ZEN (p < 0.05). In conclusion, CUR alleviated ZEN-induced liver injury in mice by scavenging ROS and inhibiting the mitochondrial apoptotic pathway.


Asunto(s)
Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Curcumina , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno , Zearalenona , Animales , Zearalenona/toxicidad , Curcumina/farmacología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología
8.
Ecotoxicol Environ Saf ; 272: 116085, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38342010

RESUMEN

Zearalenone (ZEN) is a prevalent mycotoxin that severely impacts human and animal health. However, the possible interactions between ZEN exposure, pathogen infection, immune system, and reactive oxygen species (ROS) were rarely investigated. We studied the effects of early-life ZEN (50 µM) exposure on the immune response of Caenorhabditis elegans against Bacillus thuringiensis infection and the associated mechanisms. The transcriptomic responses of C. elegans after early-life ZEN exposure were investigated using RNA sequencing and followed by verification using quantitative PCR analysis. We also investigated the immune responses of the worms through B. thuringiensis killing assays and by measuring oxidative stress. The transcriptomics result showed that early-life exposure to ZEN resulted in 44 differentially expressed genes, 7 of which were protein-coding genes with unknown functions. The Gene Ontology analysis suggested that metabolic processes and immune response were among the most significantly enriched biological processes, and the KEGG analysis suggested that lysosomes and metabolic pathways were the most significantly enriched pathways. The ZEN-exposed worms exhibited significantly reduced survival after 24-h B. thuringiensis infection, reaching near 100% mortality compared to 60% of the controls. Using qRT-PCR assay, we found that ZEN further enhanced the expression of immunity genes lys-6, spp-1, and clec-60 after B. thuringiensis infection. A concurrently enhanced ROS accumulation was also observed for ZEN-exposed worms after B. thuringiensis infection, which was 1.2-fold compared with the controls. Moreover, ZEN exposure further enhanced mRNA expression of catalases (ctl-1 and ctl-2) and increased catalase protein activity after B. thuringiensis exposure compared with their non-exposed counterparts, suggesting an elevated oxidative stress. This study suggests that early-life exposure to mycotoxin zearalenone overstimulates immune responses involving spp-17, clec-52, and clec-56, resulting in excessive ROS production, enhanced oxidative stress as indicated by aggravated ctl expression and activity, and a decline in host resistance to pathogenic infection which ultimately leads to increased mortality under B. thuringiensis infection. Our findings provide evidence that could improve our understanding on the potential interactions between mycotoxin zearalenone and pathogens.


Asunto(s)
Bacillus thuringiensis , Micotoxinas , Zearalenona , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Zearalenona/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Micotoxinas/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Inmunidad
9.
Ecotoxicol Environ Saf ; 282: 116757, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047363

RESUMEN

Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 µg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3ß-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.


Asunto(s)
Espermatogénesis , Zearalenona , Animales , Zearalenona/toxicidad , Masculino , Espermatogénesis/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Carnitina/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrógenos no Esteroides/toxicidad , Femenino , Xantófilas
10.
Mikrochim Acta ; 191(4): 175, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436786

RESUMEN

Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for  15 repetitive  injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.


Asunto(s)
Técnicas Biosensibles , Zearalenona , Inmunoensayo , Luminiscencia , Límite de Detección
11.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832980

RESUMEN

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos , Análisis de Peligros y Puntos de Control Críticos , Nanocompuestos , Zearalenona , Zearalenona/análisis , Análisis de Peligros y Puntos de Control Críticos/métodos , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Nanocompuestos/química , Nanocompuestos/normas , Electrodos , Oro/química , Sensibilidad y Especificidad , Reproducibilidad de los Resultados
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473826

RESUMEN

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Asunto(s)
Micotoxinas , Zearalenona , Humanos , Femenino , Animales , Ovinos , Zearalenona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo , Antioxidantes/farmacología , Micotoxinas/metabolismo , Apoptosis
13.
Compr Rev Food Sci Food Saf ; 23(3): e13363, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720588

RESUMEN

There is still considerable controversy about the relative risk of mycotoxin exposure associated with the consumption of organic and conventional cereals. Using validated protocols, we carried out a systematic literature review and meta-analyses of data on the incidence and concentrations of mycotoxins produced by Fusarium, Claviceps, Penicillium, and Aspergillus species in organic and conventional cereal grains/products. The standard weighted meta-analysis of concentration data detected a significant effect of production system (organic vs. conventional) only for the Fusarium mycotoxins deoxynivalenol, with concentrations ∼50% higher in conventional than organic cereal grains/products (p < 0.0001). Weighted meta-analyses of incidence data and unweighted meta-analyses of concentration data also detected small, but significant effects of production system on the incidence and/or concentrations of T-2/HT-2 toxins, zearalenone, enniatin, beauvericin, ochratoxin A (OTA), and aflatoxins. Multilevel meta-analyses identified climatic conditions, cereal species, study type, and analytical methods used as important confounding factors for the effects of production system. Overall, results from this study suggest that (i) Fusarium mycotoxin contamination decreased between the 1990s and 2020, (ii) contamination levels are similar in organic and conventional cereals used for human consumption, and (iii) maintaining OTA concentrations below the maximum contamination levels (3.0 µg/kg) set by the EU remains a major challenge.


Asunto(s)
Grano Comestible , Contaminación de Alimentos , Micotoxinas , Grano Comestible/química , Grano Comestible/microbiología , Micotoxinas/análisis , Contaminación de Alimentos/análisis , Fusarium/química , Alimentos Orgánicos/análisis , Alimentos Orgánicos/microbiología
14.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203724

RESUMEN

Zearalenone (ZEA) is present worldwide as a serious contaminant of food and feed and causes male reproductive toxicity. The implication of paraptosis, which is a nonclassical paradigm of cell death, is unclear in ZEA-induced male reproductive disorders. In this study, the toxic effects of ZEA on the blood-testis barrier (BTB) and the related mechanisms of paraptosis were detected in goats. ZEA exposure, in vivo, caused a significant decrease in spermatozoon quality, the destruction of seminiferous tubules, and damage to the BTB integrity. Furthermore, ZEA exposure to Sertoli cells (SCs) in vitro showed similar dysfunction in structure and barrier function. Importantly, the formation of massive cytoplasmic vacuoles in ZEA-treated SCs corresponded to the highly swollen and dilative endoplasmic reticulum (ER), and paraptosis inhibition significantly alleviated ZEA-induced SC death and vacuolization, which indicated the important contribution of paraptosis in ZEA-induced BTB damage. Meanwhile, the expression of ER stress marker proteins was increased after ZEA treatment but decreased under the inhibition of paraptosis. The vacuole formation and SC death, induced by ZEA, were remarkably blocked by ER stress inhibition. In conclusion, these results facilitate the exploration of the mechanisms of the SC paraptosis involved in ZEA-induced BTB damage in goats.


Asunto(s)
Células de Sertoli , Zearalenona , Masculino , Animales , Barrera Hematotesticular , Cabras , Zearalenona/toxicidad , Paraptosis , Retículo Endoplásmico , Estrés del Retículo Endoplásmico
15.
Mycotoxin Res ; 40(3): 369-387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38671221

RESUMEN

DON and ZEN residues in the blood and urine of dairy cows can be used to predict the outer exposure to DON and ZEN expressed per kilogram diet for a risk evaluation based on comparisons to critical dietary concentrations. This method was used to evaluate the exposure of dairy cows from 12 farms located in Brandenburg, Germany, fed rations with unknown DON and ZEN concentrations (N = 244). The corresponding diet concentrations predicted by different methods from analyzed blood and urine samples varied significantly amongst farms from 0 to 1.6 mg/kg for DON and 0 to 3.0 mg/kg for ZEN at a reference dry matter content of 88% but independently of lactational state (post-partum vs. early lactation). This significant variation was noticed below the critical dietary DON concentration of 5 mg/kg, while the ZEN concentration in one farm exceeded the critical ZEN level of 0.5 mg/kg markedly. Predicted DON concentrations of rations increased with the proportion of maize silage, while the high ZEN concentration found in one farm was most likely related to a higher proportion of sugar beet pulp supposedly highly contaminated by ZEN. Exceeding the critical dietary ZEN concentration and significant variations in DON contents below the critical level was not related to performance, reproductive performance, and health-related traits of cows. For a more consistent evaluation of possible associations between the inner exposure of cows to DON and ZEN, more frequent longitudinal observations of both mycotoxin residue levels and performance and health traits are required.


Asunto(s)
Tricotecenos , Zearalenona , Bovinos , Animales , Tricotecenos/orina , Tricotecenos/sangre , Tricotecenos/análisis , Zearalenona/análisis , Zearalenona/orina , Zearalenona/sangre , Medición de Riesgo , Femenino , Alemania , Alimentación Animal/análisis , Dieta/veterinaria , Industria Lechera , Orina/química
16.
Toxins (Basel) ; 16(1)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38251267

RESUMEN

Zearalenone (ZEN) is a mycotoxin produced by various Fusarium strains, that is present in food and feed raw materials worldwide, causing toxicity effects in animals and humans. This research aimed to explore the toxicokinetics of ZEN on female Dezhou donkeys following a single oral exposure dosage of 2 mg/kg BW (body weight). The sample collection of donkeys plasma was carried out at 0, 5, 10, 15, 20, 30, 45, 60, 90 min, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h and 120 h via intravenous catheter, and fecal and urinary samples were severally collected at 0 h and every 6 h until 120 h. The concentrations of ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL), α-zearalanol (α-ZAL), ß-zearalanol (ß-ZAL), zearalanone (ZAN) in plasma, urine, and feces were detected by UPLC-MS/MS. Only ZEN was detected in plasma, and the maximum was 15.34 ± 5.12 µg/L occurred at 0.48 h after gavage. The total plasma clearance (Cl) of ZEN was 95.20 ± 8.01 L·kg·BW-1·h-1. In addition, the volume of distribution (Vd) was up to 216.17 ± 58.71 L/kg. The percentage of total ZEN (ZEN plus the main metabolites) excretion in feces and urine was 2.49% and 2.10%, respectively. In summary, ZEN was fast absorbed and relatively slowly excreted in female donkeys during 120 h after a single gavage, indicating a trend of wider tissue distribution and longer tissue persistence.


Asunto(s)
Zearalenona , Zeranol/análogos & derivados , Femenino , Animales , Humanos , Zearalenona/toxicidad , Toxicocinética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Administración Oral
17.
Food Chem Toxicol ; 186: 114516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382872

RESUMEN

Zearalenone (ZEA), one of the usual mycotoxins, has been recognized in many areas and crops, posing a significant threat to the living organisms even to human beings. However, the mechanisms of locomotive defects remain unknown. Herein, zebrafish larvae was employed to investigate ZEA effects on developmental indexes, muscle and neural toxicity, apoptosis, transcriptome and motor behaviors of zebrafish larvae. Zebrafish larvae exposed to ZEA (0, 0.5, 1, 2 and 4 µM) showed no change in survival rate, but the malformation rate of zebrafish larvae increased dramatically manifesting with severe body bending and accomplished with adverse effects on hatching rate and body length. Moreover, the larvae manifested with defective muscle and abnormal neural development, resulting in decreased swimming ability, which probably due to the abnormal overactivation of apoptosis. And this was confirmed by enriched caspase 8-mediated apoptosis signaling pathway in the following transcriptome analysis. Meanwhile, there was a recovery in swimming behaviors in the larvae co-exposed in ZEA and caspase 8 inhibitor. These findings provide an important evidence for risk assessment and potential treatment target of ZEA exposure.


Asunto(s)
Discinesias , Zearalenona , Animales , Humanos , Apoptosis , Caspasa 8/genética , Caspasa 8/metabolismo , Larva , Músculos/metabolismo , Zearalenona/toxicidad , Zearalenona/metabolismo , Pez Cebra , Micotoxinas/química , Micotoxinas/metabolismo
18.
Toxicol Res (Camb) ; 13(2): tfae055, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38645625

RESUMEN

Background: Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods: Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results: Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion: Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.

19.
Toxics ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668520

RESUMEN

Mycotoxin binders, in combination with enzymes degrading some mycotoxins, contribute to feed detoxification. Their use reduces economic losses and the negative impacts of mycotoxins on animal health and productivity in farm animals. The aim of this study was to evaluate the efficacy of a mycotoxin detoxifier on the expression of the ATP-binding cassette efflux transporters ABCB1 mRNA and ABCC2 mRNA, which transport xenobiotics and thus have a barrier function, in the tissues of pigs exposed to low doses of deoxynivalenol (DON, 1 mg/kg feed) and zearalenone (ZEN, 0.4 mg/kg feed) for 37 days. The levels of expression were determined by an RT-PCR, and the effect of the mycotoxin detoxifier (Mycofix Plus3.E) was evaluated by a comparison of results between healthy pigs (n = 6), animals treated with DON and ZEN (n = 6), and a group that received both mycotoxins and the detoxifier (n = 6). A significant downregulation of ABCB1 mRNA and ABCC2 mRNA was observed in the jejunum (p < 0.05). A tendencies toward the downregulation of ABCB1 mRNA and ABCC2 mRNA were found in the ileum and duodenum, respectively. The mycotoxin detoxifier restored the expression of ABCB1 mRNA to the level found in healthy animals but did not restore that of ABCC2 mRNA to the level of healthy animals in the jejunum.

20.
Int J Biol Macromol ; 260(Pt 2): 129664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266837

RESUMEN

Zearalenone (ZEN) is a notorious mycotoxin commonly found in Fusarium-contaminated crops, which causes great loss in livestock farming and serious health problems to humans. In the present work, we found that crude peroxidase extraction from soybean hulls could use H2O2 as a co-substate to oxidize ZEN. Molecular docking and dynamic simulation also supported that ZEN could bind to the active site of soybean hull peroxidase (SHP). Subsequently, SHP extracted from soybean hulls was purified using a combined purification protocol involving ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography. The purified SHP showed wide pH resistance and high thermal stability. This peroxidase could degrade 95 % of ZEN in buffer with stepwise addition of 100 µM H2O2 in 1 h. The two main ZEN degradation products were identified as 13-OH-ZEN and 13-OH-ZEN-quinone. Moreover, SHP-catalyzed ZEN degradation products displayed much less cytotoxicity to human liver cells than ZEN. The application of SHP in various food matrices obtained 54 % to 85 % ZEN degradation. The findings in this study will promote the utilization of SHP as a cheap and renewable biocatalyst for degrading ZEN in food.


Asunto(s)
Zearalenona , Humanos , Glycine max , Peroxidasa , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Peroxidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA