Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(3): 1484-1494, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198516

RESUMEN

The environmental impact of sunscreen is a growing concern, yet the combined effects of its components on marine animals are poorly understood. In this study, we investigated the combined effects of sunscreen-extracted zinc oxide nanoparticles (nZnO) and microplastics (MPs) on the development of barnacle larvae, focusing on the different roles played by primary microplastics (PMPs) and secondary microplastics (SMPs) generated through the phototransformation of PMPs. Our findings revealed that a lower concentration of nZnO (50 µg/L) enhanced molting and eye development in barnacle larvae, while a higher concentration (500 µg/L) inhibited larval growth. Co-exposure to PMPs had no significant effect on larval development, whereas SMPs mitigated the impact of nZnO by restricting the in vivo transformation to ionic Zn. Accumulated SMPs reduced gut dissolution of nZnO by up to 40%, lowering gut acidity by 85% and buffering the in vivo dissolution of nZnO. We further identified a rough-surfaced Si-5 fragment in SMPs that damaged larval guts, resulting in decreased acidity. Another Si-32 resisted phototransformation and had no discernible effects. Our study presented compelling evidence of the impacts of SMPs on the bioeffect of nZnO, highlighting the complex interactions between sunscreen components and their combined effects on marine organisms.


Asunto(s)
Nanopartículas , Thoracica , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Microplásticos , Plásticos , Larva , Protectores Solares
2.
Mol Biol Rep ; 51(1): 423, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489102

RESUMEN

BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.


Asunto(s)
Antiinfecciosos , Benzotiazoles , Carcinoma de Células Escamosas , Curcumina , Nanopartículas del Metal , Neoplasias de la Boca , Ácidos Sulfónicos , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Curcumina/farmacología , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Biopelículas , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
3.
Mol Biol Rep ; 51(1): 89, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184807

RESUMEN

BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 µg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.


Asunto(s)
Antiinfecciosos , Neoplasias de la Boca , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Carragenina/farmacología , Staphylococcus aureus , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Candida albicans
4.
Mol Biol Rep ; 51(1): 352, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400866

RESUMEN

BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds. METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors. RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes. CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.


Asunto(s)
Antiinfecciosos , Benzotiazoles , Carcinoma , Cinamatos , Nanopartículas del Metal , Ácidos Sulfónicos , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Antioxidantes/farmacología , Staphylococcus aureus , Células KB , Antiinfecciosos/farmacología
5.
Part Fibre Toxicol ; 21(1): 9, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419076

RESUMEN

BACKGROUND: Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. RESULTS: We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. CONCLUSIONS: Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.


Asunto(s)
Exosomas , Nanopartículas , Óxido de Zinc , Ratones , Animales , Óxido de Zinc/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR , Rayos Ultravioleta/efectos adversos , Citocinas , Inflamasomas , Nanopartículas/toxicidad , Células Epiteliales
6.
J Nanobiotechnology ; 22(1): 390, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961442

RESUMEN

BACKGROUND: Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS: We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS: The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.


Asunto(s)
Ferroptosis , MicroARNs , FN-kappa B , Transducción de Señal , Espermatocitos , Testículo , Óxido de Zinc , Animales , Masculino , Ratones , Proliferación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas del Metal/química , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatocitos/metabolismo , Espermatocitos/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química
7.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907185

RESUMEN

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Asunto(s)
Alcaloides , Apoptosis , Benzodioxoles , Biopelículas , Neoplasias de la Boca , Piperidinas , Alcamidas Poliinsaturadas , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína p53 Supresora de Tumor , Óxido de Zinc , Proteína X Asociada a bcl-2 , Óxido de Zinc/farmacología , Humanos , Piperidinas/farmacología , Apoptosis/efectos de los fármacos , Alcaloides/farmacología , Benzodioxoles/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/efectos de los fármacos , Biopelículas/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Nanopartículas , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/uso terapéutico , Antineoplásicos/farmacología , Microscopía Electrónica de Rastreo , Difracción de Rayos X , Línea Celular Tumoral , Células KB
8.
Exp Dermatol ; 32(2): 154-164, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270963

RESUMEN

Rhamnolipids are microbial metabolites with antibacterial efficacies, which can be further boosted through the application of nanobiotechnology. In this study, the efficacy of rhamnolipid-coated zinc oxide nanoparticles (ZnRL) has been studied for their wound healing efficacy as well as in vivo antibacterial efficacy. Thus, this study evaluates the efficacy of ZnRL to heal an excised infected wound, which was compared with the healing efficacy of rhamnolipid and clindamycin. The study revealed that rhamnolipid-coated zinc oxide nanoparticles possess promising wound healing efficacy with prominent antibacterial activity in the rat model. Prominent wound healing in a Staphylococcus aureus infected excised wound was observed on the 5th day of the treatment when the wound site was treated with 100 µl of 0.5 mg/ml of ZnRL. This concentration of ZnRL was found to exhibit efficient antibacterial activity against the pathogen, thereby decreasing the amount of pathogen in the wound site. ZnRL exhibited efficient wound contraction, thereby decreasing the size of the wound prominently in 5 days. Histological study revealed efficient tissue remodelling in ZnRL-treated skin which resulted in rapid formation of the epidermis and recruitment of various dermal cells within the 5th day of treatment. The study also revealed the non-cytotoxic effect of the nanoparticles in fibroblast cell line L929 and the non-haemolytic effect against blood cells, indicating its potential in pharmaceuticals.


Asunto(s)
Nanopartículas , Óxido de Zinc , Ratas , Animales , Óxido de Zinc/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Cicatrización de Heridas
9.
Environ Res ; 228: 115806, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004855

RESUMEN

The beneficial effects of N-decanoyl-homoserine lactone (C10-HSL), one of the typical N-acyl-homoserine lactones on biological nitrogen removal (BNR) system to resist the acute exposure of zinc oxide nanoparticles (ZnO NPs) has attracted extensive attentions. Nevertheless, the potential impact of dissolved oxygen (DO) concentration on the regulatory capacity of C10-HSL in the BNR system has yet to be investigated. This study conducted a systematic investigation of the impact of DO concentration on the C10-HSL-regulated BNR system against short-term ZnO NP exposure. Based on the findings, sufficient DO played a crucial role to improve the BNR system's resistance capacity to ZnO NPs. Under the micro-aerobic condition (0.5 mg/L DO), the BNR system was more sensitive to ZnO NPs. The ZnO NPs induced increased intracellular reactive oxygen species (ROS) accumulation, reduced antioxidant enzyme activities, and decreased specific ammonia oxidation rates in the BNR system. Furthermore, the exogenous C10-HSL had a positive effect on the BNR system's resistance to ZnO NP-induced stress, primarily by decreasing ZnO NPs-induced ROS generation and improving ammonia monooxygenase activities, especially under low DO concentrations. The findings contributed to the theoretical foundation for regulation strategy development of wastewater treatment plants under NP shock threat.


Asunto(s)
Óxido de Zinc , Desnitrificación , Nitrógeno , Oxígeno , Especies Reactivas de Oxígeno
10.
Drug Chem Toxicol ; 46(6): 1176-1186, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36330702

RESUMEN

In this study, we examined the effects of different doses (100, 500, 1000, 3000, and 5000 ppm) of zinc oxide nanoparticles (ZnO NPs) on the total hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). The results showed that NPs caused a decrease in hemocyte count at 1000, 3000, and 5000 ppm doses. To investigate the effects of ZnO NPs on the encapsulation and melanization response of G. mellonella, the pre-dyed Sephadex chromatography beads were injected into the hemolymph of each last-instar larva. Larvae were dissected in the 4th and 24th hours after the injection. The level of the encapsulation response and melanization status around the beads were determined under microscopy. The analyses of the beads injected into the insects as encapsulation targets revealed that the number of weakly encapsulated beads increased significantly at 100, 1000, 3000, and 5000 ppm doses when compared to the control group after a short (4-h) post-injection. The number of melanized beads increased significantly at 100, 1000, and 3000 ppm doses in comparison to the control group after the short (4-h) post-injection. Finally, the number of melanized beads decreased significantly at 1000 and 5000 ppm doses when compared to the control group after the long-term (24-h) post-injection.


Asunto(s)
Mariposas Nocturnas , Nanopartículas , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Hemocitos , Larva , Inmunidad
11.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108187

RESUMEN

Silver nanoparticles (AgNPs) are remarkably able to eliminate microorganisms, but induce cytotoxicity in mammalian cells, and zinc oxide nanoparticles (ZnONPs) are considered to have a wide bactericidal effect with weak cytotoxicity. In this study, both zinc oxide nanoparticles and silver nanoparticles were co-synthesized on a nano-silicate platelet (NSP) to prepare a hybrid of AgNP/ZnONP/NSP. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the formation of nanoparticles on the NSP. Synthesized ZnONP/NSP (ZnONP on NSP) was confirmed by the absorption peaks on UV-Vis and XRD. AgNP synthesized on ZnONP/NSP was also characterized by UV-Vis, and ZnONP/NSP showed no interference with synthesis. The images of TEM demonstrated that NSP provides physical support for the growth of nanoparticles and could prevent the inherent aggregation of ZnONP. In antibacterial tests, AgNP/ZnONP/NSP exhibited more efficacy against Staphylococcus aureus (S. aureus) than ZnONP/NSP (ZnONP was synthesized on NSP) and AgNP/NSP (AgNP was synthesized on NSP). In cell culture tests, 1/10/99 (weight ratio) of AgNP/ZnONP/NSP exhibited low cytotoxicity for mammalian cells (>100 ppm). Therefore, AgNP/ZnONP/NSP, containing both AgNP and ZnONP, with both strong antibacterial qualities and low cytotoxicity, showed potentially advantageous medical utilizations due to its antibacterial properties.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Silicatos/farmacología , Silicatos/química , Mamíferos
12.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677769

RESUMEN

The risk of resistance development and adverse effects on human health and the environment has increased in the last decade. Furthermore, many antifungal agents fail to inhibit the pathogenesis of azole-resistant Aspergillus flavus. In this report, we isolated and identified azole-resistant A. flavus isolates from two sources of maize (white and yellow maize). The susceptibilities of Aspergillus flavus isolates were investigated by conventional antifungals such as Terbinfine, Fluconazole, Ketoconazole, Voricazole, Amphotericin, and Nystatin. Then zinc oxide nanoparticles associated with Chlorella vulgaris, which are synthesized by using the precipitation method, were examined against isolated fungi. The results showed that twelve species of white corn were isolated out of fifty isolates, while the number of isolates from the yellow corn source was only four. Interestingly, the following antifungals have an impact effect against azole-resistant A. flavus isolates: the inhibition zones of ketoconazole, voricazole, and terbinafine were 40 mm, 20 mm, and 12 mm, respectively, while the remaining antifungal agents have no effect. Similarly, the inhibition zones of the following antifungal agents were as follows: 41 mm for Terbinfine, 13 mm for Voricazole, and 11 mm for Ketoconazole against Aspergillus flavus that was isolated from yellow corn. The physiochemical characterization of zinc oxide nanoparticles provides evidence that ZnO-NPs associate with Chlorella vulgaris and have been fabricated by the precipitation method with a diameter of 25 nm. The zinc oxide nanoparticle was then used to isolate azole-resistant A. flavus, and the results show that ZnO-NPs have an effect on azole-resistant A. flavus isolation. The inhibition zone of zinc oxide nanoparticles against A. flavus (that was isolated from white corn) was 50 mm with an MIC of 50 mg/mL, while the inhibition zone of zinc oxide nanoparticles against Azole-resistant A. flavus isolated from yellow corn was 14 nm with an MIC of 25 mg/mL, which indicated that zinc oxide nanoparticles gave a better result against Azole-resistant A. flavus isolated from maize.


Asunto(s)
Chlorella vulgaris , Óxido de Zinc , Humanos , Antifúngicos/farmacología , Aspergillus flavus , Zea mays , Óxido de Zinc/farmacología , Azoles/farmacología , Cetoconazol/farmacología , Pruebas de Sensibilidad Microbiana
13.
Bull Environ Contam Toxicol ; 109(3): 484-487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35842485

RESUMEN

The glutathione reductase (GR) of baker's yeast (Saccharomyces cerevisiae) was exposed to titanium dioxide nanoparticles (TiO2 NPs) and zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 25, 50, 100, 250, and 500 mg/L (ppm) in vitro. According to the calculations, the effect of 25, 50, 100, 250, and 500 mg/L TiO2 NPs on GR enzyme activities resulted in percentage changes of - 3.12; - 0.87; - 2.12; - 2.12, and - 1.50, respectively. Percentage changes in GR enzyme activities with the effect of 25, 50, 100, 250, and 500 mg/L ZnO NPs were calculated as - 2.01; + 1.88; + 0.38; - 2.51, and + 0.75, respectively. It can be deduced from this research that the change in concentrations of TiO2 NPs and ZnO NPs has no statistically significant effect on GR enzyme activities in comparison with the control groups (p > 0.05, N = 3).


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antioxidantes , Glutatión Reductasa , Nanopartículas del Metal/toxicidad , Saccharomyces cerevisiae , Titanio/toxicidad , Óxido de Zinc/toxicidad
14.
BMC Plant Biol ; 21(1): 150, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761895

RESUMEN

BACKGROUND: Rice is particularly effective, compared to other cereals, at accumulating arsenic (As), a nonthreshold, class 1 human carcinogen in shoot and grain. Nano-zinc oxide is gradually used in agricultural production due to its adsorption capacity and as a nutrient element. An experiment was performed to explore the effects of zinc oxide nanoparticles (nZnO) on arsenic (As) toxicity and bioaccumulation in rice. Rice seedlings were treated with different levels of nZnO (0, 10, 20, 50, 100 mg/L) and As (0, and 2 mg/L) for 7 days. RESULTS: The research showed that 2 mg/L of As treatment represented a stress condition, which was evidenced by phenotypic images, seedling dry weight, chlorophyll, and antioxidant enzyme activity of rice shoot. The addition of nZnO (10-100 mg/L) enhanced the growth and photosynthesis of rice seedlings. As concentrations in the shoots and roots were decreased by a maximum of 40.7 and 31.6% compared to the control, respectively. Arsenite [As (III)] was the main species in both roots (98.5-99.5%) and shoots (95.0-99.6%) when exposed to different treatments. Phytochelatins (PCs) content up-regulated in the roots induced more As (III)-PC to be complexed and reduced As (III) mobility for transport to shoots by nZnO addition. CONCLUSION: The results confirmed that nZnO could improve rice growth and decrease As accumulation in shoots, and it performs best at a concentration of 100 mg/L.


Asunto(s)
Arsénico/toxicidad , Nanopartículas del Metal , Oryza/efectos de los fármacos , Óxido de Zinc/farmacología , Arsénico/metabolismo , Permeabilidad de la Membrana Celular , Clorofila/metabolismo , Fertilizantes , Oryza/crecimiento & desarrollo , Oryza/metabolismo
15.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805514

RESUMEN

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Asunto(s)
Antiinfecciosos , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Nanopartículas del Metal , Extractos Vegetales/química , Óxido de Zinc , Acacia/química , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Tecnología Química Verde , Humanos , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratas , Ratas Sprague-Dawley , Óxido de Zinc/farmacología , Óxido de Zinc/uso terapéutico
16.
Arch Biochem Biophys ; 683: 108324, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32112740

RESUMEN

Glaucoma is the leading cause of irreversible blindness in the world and trabeculectomy remains still the most commonly performed filtration surgery. Failure of trabeculectomy is due to the formation of scarring, which is associated with the increased fibroblast proliferation, activation, and collagen deposition at the site of the drainage channel with subconjunctival fibrosis. Our previous study has revealed that zinc oxide (ZnO) nanoparticles could efficiently decrease the expressions of TGF-ß1 and inhibit fibroblast-mediated collagen lattice contraction. However, the mechanism underlying ZnO nanoparticle-induced fibroblast apoptosis is still unclear. In the present study, we investigated the effect of ZnO nanoparticles on the reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in human Tenon fibroblasts (HTFs). Moreover, we also explored the influence of ZnO nanoparticles on the expression of Caspase-3, Caspase-9, apoptotic protease-activating factor-1 (Apaf-1), fibroblast-specific protein-1 (FSP-1), collagen III, and E-cadherin. The results indicated that ZnO nanoparticles markedly inhibit HTFs viability and decrease the Δψm in a concentration-dependent pattern. Exposure of HTFs to ZnO nanoparticles could also induce the elevated Caspase-3, Caspase-9, and Apaf-1 expression, decrease the levels of FSP-1, collagen III, and E-cadherin expression, leading to HTFs apoptosis. Our results suggested that elevated ROS and activated Caspase signaling play a fundamental role in ZnO nanoparticle-induced HTFs apoptosis.


Asunto(s)
Apoptosis , Fibroblastos/citología , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Óxido de Zinc/química , Antioxidantes/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Movimiento Celular , Supervivencia Celular , Humanos , Potencial de la Membrana Mitocondrial , Factor de Crecimiento Transformador beta1/metabolismo
17.
J Cell Biochem ; 120(10): 17984-17993, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172567

RESUMEN

PURPOSE: In the present study, we aimed to synthesize and investigate the impact of zinc oxide nanoparticle (ZnONPs) on both human and murine breast cancer cell lines and define their untoxic concentrations (IC50 ) to clarify their apoptotic properties and introduce them as the anticancer agents. MATERIALS AND METHODS: The in vitro study was initiated by ZnONPs green synthesizing process applying the Cucumis melo inodorus rough shell extract, and verified by the transmission electron microscope, scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analysis. In following, the human (Michigan Cancer Foundation-7 [MCF7]) and murine (TUBO) breast cancer cell lines were cultured for taking the time and dose-dependent treatment planes by ZnONPs. Also, MCF7 cell cultures were treated by three different doses of ZnoNPs (8, 4, and 2 µg/mL) separately and prepared for genes expression (Cas-3 and Cas-8) analysis using real-time quantitative PCR method. The in vivo initiated by providing the 39 murine breast cancer models, then they were injected intraperitoneally with different doses of ZnONPs (75, 50, and 25 mg/kg) treatments. Then their collected biopsies were stained by hematoxylin and eosin to evaluate their breast cancer tissue morphology and compare with Tamoxifen anticancer properties. RESULTS: The in vitro study results demonstrate a significant correlation among the expression of Cas-3 and Cas-8 genes with increasing ZnONPs concentrations. The results of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assays for the treated cancer cell lines (MCF7 and TUBO) detected a significant negative correlation among the ZnONPs concentrations and the viability of the cells. CONCLUSION: Unlike the majority of resent studies, we found the ZnONPs as a powerful apoptosis inducer in the human cell line (MCF7) and murine (TUBO cell line and cancer model).


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Cucumis melo/química , Tecnología Química Verde , Neoplasias Mamarias Animales/patología , Nanopartículas del Metal/química , Óxido de Zinc/farmacología , Animales , Benzotiazoles/química , Neoplasias de la Mama/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Ciclo Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Neoplasias Mamarias Animales/genética , Nanopartículas del Metal/ultraestructura , Ratones , Ácidos Sulfónicos/química
18.
Arch Biochem Biophys ; 669: 1-10, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31112708

RESUMEN

Glaucoma is a major cause of irreversible blindness in the world and filtering surgery is commonly carried out to control intraocular pressure. Failure of filtering surgery is usually due to postoperative scarring, and fibroblast proliferation, collagen production and subconjunctival fibrosis play a prominent role in obstructing aqueous humor from the anterior chamber to the subconjunctival space. Zinc oxide (ZnO) nanoparticles have been widely applied in biomedical fields. However, the influence of ZnO nanoparticles on human tenon fibroblasts (HTFs) is still unclear. In the present study, we first explored the effects of various concentrations of ZnO nanoparticles on HTFs proliferation, reactive oxygen species (ROS) generation, cell cycle arrest, and apoptosis. Further, we determined the changes of transforming growth factor-ß (TGF-ß1), fibronectin (FN) extra domain A (ED-A), and procollagen I carboxyterminal propeptide (PICP) at mRNA and protein levels, explored the effect of ZnO nanoparticles on the collagen lattice contraction in HTFs. The results indicated that ZnO nanoparticles can efficiently inhibit HTFs proliferation, elevate ROS production level, and induce cell cycle arrest at G2/M phase, leading to HTFs apoptosis. ZnO nanoparticles can also decrease the expressions of TGF-ß1, ED-A, and PICP at mRNA and protein levels; significantly prevent fibroblast-mediated collagen lattice contraction. Taken together, ZnO nanoparticles can efficiently ameliorate collagen lattice contraction in HTFs, and may be a promising antifibrotic agent in glaucoma filtration surgery. Our findings provide a new insight on anti-scar formation after glaucoma filtration surgery by using ZnO nanoparticles.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/efectos de los fármacos , Nanopartículas del Metal/química , Cápsula de Tenon/citología , Óxido de Zinc/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Fragmentos de Péptidos/metabolismo , Procolágeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Óxido de Zinc/química
19.
J Biomed Sci ; 26(1): 70, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31500628

RESUMEN

BACKGROUND: Currently available anti-influenza drugs are often associated with limitations such as toxicity and the appearance of drug-resistant strains. Therefore, there is a pressing need for the development of novel, safe and more efficient antiviral agents. In this study, we evaluated the antiviral activity of zinc oxide nanoparticles (ZnO-NPs) and PEGylated zinc oxide nanoparticles against H1N1 influenza virus. METHODS: The nanoparticles were characterized using the inductively coupled plasma mass spectrometry, x-ray diffraction analysis, and electron microscopy. MTT assay was applied to assess the cytotoxicity of the nanoparticles, and anti-influenza activity was determined by TCID50 and quantitative Real-Time PCR assays. To study the inhibitory impact of nanoparticles on the expression of viral antigens, an indirect immunofluorescence assay was also performed. RESULTS: Post-exposure of influenza virus with PEGylated ZnO-NPs and bare ZnO-NPs at the highest non-toxic concentrations could be led to 2.8 and 1.2 log10 TCID50 reduction in virus titer when compared to the virus control, respectively (P < 0.0001). At the highest non-toxic concentrations, the PEGylated and unPEGylated ZnO-NPs led to inhibition rates of 94.6 and 52.2%, respectively, which were calculated based on the viral loads. There was a substantial decrease in fluorescence emission intensity in viral-infected cell treated with PEGylated ZnO-NPs compared to the positive control. CONCLUSIONS: Taken together, our study indicated that PEGylated ZnO-NPs could be a novel, effective, and promising antiviral agent against H1N1 influenza virus infection, and future studies can be designed to explore the exact antiviral mechanism of these nanoparticles.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal , Polietilenglicoles/farmacología , Óxido de Zinc/farmacología , Pruebas de Sensibilidad Microbiana , Nanomedicina
20.
J Appl Toxicol ; 39(5): 735-750, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30618096

RESUMEN

In recent years, the large-scale production of ZnO nanoparticles (NPs) for various applications is increasing exponentially and may pose serious health issues when inhaled either during occupational exposure or in consumer settings. The mechanisms underlying the toxicity of NPs have recently been studied intensively. Despite the existing studies, the mutagenicity of ZnO NPs in the eukaryotic system is still unclear. Therefore, the aim of the present study was to investigate the mutagenic potential of ZnO NPs using Chinese hamster lung fibroblast cells (V-79) as an in-vitro model. The study has demonstrated a significant uptake of ZnO NPs by flow cytometry with the confirmation of transmission electron microscopy. A reduction in cell viability was observed with a concomitant increase in reactive oxygen species (**P < 0.01, ***P < 0.001) after ZnO NP (1-20 µg/mL) exposure. Excessive reactive oxygen species can induce oxidative stress, which leads to genotoxic insult, and further gene mutation. Apart from measuring the genotoxicity by Comet assay, a change of 2.84-fold in the HGPRT gene mutant frequency was observed by the mammalian gene forward mutation assay. All the genotoxicity endpoints such as chromosomal break, DNA damage and mutagenicity were observed at 6 hours of ZnO NP exposure. Our results also showed that ZnO NPs manifested the cell cycle arrest, ultrastructural modifications and further cell death. A significant (**P < 0.01, ***P < 0.001) increase in the apoptotic cells was detected using annexin V-fluorescein isothiocyanate/propidium iodide double staining by flow cytometry. Our findings presented here clearly stimulate the need for careful regulations of ZnO NPs.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Daño del ADN , Fibroblastos/efectos de los fármacos , Hipoxantina Fosforribosiltransferasa/genética , Nanopartículas/toxicidad , Óxido de Zinc/toxicidad , Animales , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Ensayo Cometa , Cricetulus , Fibroblastos/patología , Pruebas de Micronúcleos , Mutación , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA