Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Adv Healthc Mater ; 13(15): e2304140, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444227

RESUMEN

The authors report the fabrication of highly sensitive, rapidly responding flexible force sensors using ZnO/ZnMgO coaxial nanotubes grown on graphene layers and their applications in sleep apnea monitoring. Flexible force sensors are fabricated by forming Schottky contacts to the nanotube array, followed by the mechanical release of the entire structure from the host substrate. The electrical characteristics of ZnO and ZnO/ZnMgO nanotube-based sensors are thoroughly investigated and compared. Importantly, in force sensor applications, the ZnO/ZnMgO coaxial structure results in significantly higher sensitivity and a faster response time when compared to the bare ZnO nanotube. The origin of the improved performance is thoroughly discussed. Furthermore, wireless breath sensing is demonstrated using the ZnO/ZnMgO pressure sensors with custom electronics, demonstrating the feasibility of the sensor technology for health monitoring and the potential diagnosis of sleep apnea.


Asunto(s)
Grafito , Nanotubos , Óxido de Zinc , Óxido de Zinc/química , Nanotubos/química , Grafito/química , Humanos , Pruebas Respiratorias/métodos , Pruebas Respiratorias/instrumentación , Síndromes de la Apnea del Sueño/diagnóstico
2.
Bioact Mater ; 37: 72-85, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523703

RESUMEN

Bone tissue engineering is the main method for repairing large segment bone defects. In this study, a layer of bioactive MgO nanoparticles was wrapped on the surface of spherical Zn powders, which allowed the MgO nanoparticles to be incorporated into 3D-printed Zn matrix and improved the biodegradation and biocompatibility of the Zn matrix. The results showed that porous pure Zn scaffolds and Zn/MgO scaffolds with skeletal-gyroid (G) model structure were successfully prepared by selective laser melting (SLM). The average porosity of two porous scaffolds was 59.3 and 60.0%, respectively. The pores were uniformly distributed with an average pore size of 558.6-569.3 µm. MgO nanoparticles regulated the corrosion rate of scaffolds, resulting in a more uniform corrosion degradation behavior of the Zn/MgO scaffolds in simulated body fluid solution. The degradation ratio of Zn/MgO composite scaffolds in vivo was increased compared to pure Zn scaffolds, reaching 15.6% at 12 weeks. The yield strength (10.8 ± 2.4 MPa) of the Zn/MgO composite scaffold was comparable to that of cancellous bone, and the antimicrobial rate were higher than 99%. The Zn/MgO composite scaffolds could better guide bone tissue regeneration in rat cranial bone repair experiments (completely filling the scaffolds at 12 weeks). Therefore, porous Zn/MgO scaffolds with G-model structure prepared with SLM are a promising biodegradable bone tissue engineering scaffold.

3.
Heliyon ; 10(1): e24107, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226290

RESUMEN

Perovskite photovoltaics have an immense contribution toward the all-round development of the solar cell. Apart from the flexibility, stability, and high efficiency, more stress has been given to using lead-free as well as eco-friendly, inexpensive materials in the fabrication of PSC devices. The utilization of non-volatile material, such as cesium tin iodide (CsSnI3), can be proposed for designing the PSC device, which not only makes it eco-friendly but also offers better optoelectronic characteristics due to its smaller bandgap of 1.27 eV. The inclusion of Sn in the perovskite material also functions as an increment in the stability of the perovskite. In the present simulation, CsSnI3 is used as an active absorber layer while the ZnMgO is used as an ETL for a cost-effective nature. Similarly, graphene oxide (GO) is used as HTL for a superior collection of holes. The comprehensive numerical modeling of the ZnMgO can be utilized in solar cell designing with appropriate CsSnI3 thickness, working temperature, total defectivity, and resistance impact, respectively. The presently simulated device offers an excellent efficiency of 17.37 % with CsSnI3-based PSC. These results of the study also show an effective route to develop highly efficient lead-free PSC devices.

4.
Materials (Basel) ; 16(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36676338

RESUMEN

Highly efficient and all-solution processed quantum dot light-emitting diodes (QLEDs) with high performance are demonstrated by employing ZnMgO nanoparticles (NPs) with core/shell structure used as an electron transport layer (ETL). Mg-doping in ZnO NPs exhibits a different electronic structure and degree of electron mobility. A key processing step for synthesizing ZnMgO NPs with core/shell structure is adding Mg in the solution in addition to the remaining Mg and Zn ions after the core formation process. This enhanced Mg content in the shell layer compared with that of the core X-ray photoelectron spectroscopy showed a higher number of oxygen vacancies for the ZnMgO core/shell structure, thereby enhancing the charge balance in the emitting layer and improving device efficiency. The QLED incorporating the as synthesized ZnMgO NP core/shell A exhibited a maximum luminance of 55,137.3 cd/m2, maximum current efficiency of 58.0 cd/A and power efficiency of 23.3 lm/W. The maximum current efficiency and power efficiency of the QLED with ZnMgO NP core/shell A improved by as much as 156.3% and 113.8%, respectively, compared to the QLED with a Zn0.9Mg0.1O NP ETL, thus demonstrating the benefits of ZnMgO NPs with the specified core/shell structure.

5.
Materials (Basel) ; 15(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499844

RESUMEN

Heterojunction light-emitting diodes (LEDs), based on p-type ZnO and n-type ZnMgO nanoparticles, have been demonstrated. ZnMgO nanoparticles were prepared by the thermal diffusion of Mg onto ZnO nanoparticles. p-ZnO/GZO homostructure LEDs and p-ZnO/n-ZnMgO/GZO heterostructure LEDs have been fabricated using ZnO and ZnMgO nanoparticles. By comparing the characteristic results of these diodes, it can be seen that LEDs with the p-ZnO/n-ZnMgO/GZO structure showed better I-V characteristics with a lower current density leakage than those with the p-ZnO/GZO LED structure. Moreover, the emission intensity was improved by adding the ZnMgO NP layer to the LEDs. These results show that the ZnMgO NP layer acts as a hetero-barrier layer that suppresses the diffusion of holes into the n-type layer and confines holes to the p-type layer.

6.
Micromachines (Basel) ; 13(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888957

RESUMEN

High Mg content (60%) ZnMgO samples with and without Ga dope were grown by an RF magnetron sputtering system. The effect of Ga dope on the ZnMgO sample and the respective ultraviolet photodetectors (UVPD) device's performance were carefully studied by various experimental methods. The investigations of the structure and optical properties of the ZnMgO sample established that the Ga doped sample has a better crystal quality and larger band gap (5.54 eV). The current-voltage characteristics indicate that both the photocurrent and dark current were enhanced after Ga dope. Under 12 V bias, the undoped UVPD show two spectral response peaks at 244 nm and 271 nm with a responsivity of 1.9 A/W and 0.38 A/W, respectively. While the Ga doped UVPD showed only one response peak at 241 nm and the deep UV responsibility up to 8.9 A/W;, as the bias increased from 12 V to 60 V, the responsiveness raised to 52 A/W, with a signal to noise ratio (241 nm/700 nm) as high as 105. Combining the results of XRD, PL spectrum and XPS, the enhanced ultraviolet photoresponse of the Ga dope device contributed to improving the crystal quality and "dopant-defect pairing effect" caused by Ga doping, which led to a considerable reduction in the number of ionized impurities in the scatting centers, and enhanced the carrier's mobility. Our work demonstrates that even a high Mg content ZnMgO can exhibit enhanced UV performance after a Ga dope due to the dopant-defect pairing effect, which confirmed the advantage of the use of ZnMgO in the deep-UV region.

7.
Adv Mater ; 34(10): e2109498, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35014093

RESUMEN

Selective spectral detection of ultraviolet (UV) radiation is highly important across numerous fields from health and safety to industrial and environmental monitoring applications. Herein, a nontoxic, visible-blind, quantum dot (QD)-based sensing scheme that expands the spectral coverage of silicon complementary metal-oxide-semiconductor (CMOS) sensors into the UV, enabling efficient UV detection without affecting the sensor performance in the visible and UV-band discrimination, is reported. This scheme uses zinc magnesium oxide (ZnMgO) QDs with compositionally tunable absorption across UV and high photoluminescence quantum yield in the visible. The efficient luminescence and large Stokes shift of these QDs are exploited herein to act as an efficient downconverting material that enhances the UV sensitivity of Si-photodetectors (Si-PDs). A Si-PD integrated with the QDs results in a ninefold improvement in photoresponsivity from 0.83 to 7.5 mA W-1 at 260 nm. Leveraging the tunability of these QDs, a simple UV-band identification scheme is further reported, which uses two distinct-bandgap ZnMgO QDs stacked in a tandem architecture whose spectral emission color depends on the UV-band excitation light. The downconverting stack enables facile discrimination of UV light using a standard CMOS image sensor (camera) or by the naked eye and avoids the use of complex optics.

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144997

RESUMEN

A series of Zn1-xMgxO thin films with x ranging from 0 to 0.8 were prepared by spin coating and aerosol spray pyrolysis deposition on Si and quartz substrates. The morphology, composition, nano-crystalline structure, and optical and vibration properties of the prepared films were studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and optical and Raman scattering spectroscopy. The optimum conditions of the thermal treatment of samples prepared by spin coating were determined from the point of view of film crystallinity. The content of crystalline phases in films and values of the optical band gap of these phases were determined as a function of the chemical composition. We developed heterostructure photodetectors based on the prepared films and demonstrated their operation in the injection photodiode mode at forward biases. A device design based on two Zn1-xMgxO thin films with different x values was proposed for extending the operational forward bias range and improving its responsivity, detectivity, and selectivity to UV radiation.

9.
ACS Appl Mater Interfaces ; 13(17): 20305-20312, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891811

RESUMEN

We demonstrate the effect of air exposure on optical and electrical properties of ZnMgO nanoparticles (NPs) typically exploited as an electron transport layer in Cd-based quantum-dot light-emitting diodes (QLEDs). We analyze the roles of air components in modifying the electrical properties of ZnMgO NPs, which reveals that H2O enables the reduction of hole leakage while O2 alters the character of charge transport due to its ability to trap electrons. As a result, the charge balance in the QDs layer is improved, which is confirmed by voltage-dependent measurements of photoluminescence quantum yield. The maximum external quantum efficiency is improved over 2-fold and reaches the value of 9.5% at a luminance of 104 cd/m2. In addition, we investigate the problem of electron leakage into the hole transport layer and show that trap-mediated electron transport in the ZnMgO layer caused by adsorbed O2 ensures a higher leakage threshold. This work also provides an insight into the possible disadvantages of device contact with air as well as problems and challenges that might occur during open-air fabrication of QLEDs.

10.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34685131

RESUMEN

A novel mesoporous Zn/MgO hexagonal-nano-plate catalyst was synthesized by a simple template-free hydrothermal method and applied in the base-catalyzed transesterification of Camelina oil for biodiesel synthesis. The Zn/MgO catalyst calcinated at 873 K exhibited the highest catalytic activity with a yield of 88.7%. This catalytic reaction was performed using 3% w/w of the catalyst with a methanol-to-oil molar ratio of 24:1 at 393 K in 8 h. The excellent catalytic performance is possibly attributed to its favorable textural features with relatively high surface area (69.1 m2 g-1) and appropriate size of the mesopores (10.4 nm). In addition, the as-synthesized catalyst demonstrated a greater basic sites density than single mesoporous MgO, which might have been promoted by the addition of Zn, leading to a synergetic interaction that enhanced its catalytic activity. This catalytic system demonstrated high stability for five catalytic runs and catalytic activity with over 84% yield.

11.
Foods ; 9(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987690

RESUMEN

To answer to food industry requests to monitor the presence of L. monocytogenes in cold-smoked salmon samples and to extend their shelf-life, a qPCR protocol for the detection of L. monocytogenes, and an antibacterial active packaging reinforced with zinc magnesium oxide nanoparticles (Zn-MgO NPs) were developed. The qPCR allowed the sensitive and easy detection of L. monocytogenes in naturally contaminated samples, with specificity in full agreement with the standard methods. The halo diffusion study indicated a high antibacterial efficiency of 1 mg/mL Zn-MgO NPs against L. monocytogenes, while the flow cytometry showed only moderate cytotoxicity of the nanoparticles towards mammalian cells at a concentration above 1 mg/mL. Thus, the novel active packaging was developed by using 1 mg/mL of Zn-MgO NPs to reinforce the alginate film. Cold-smoked salmon samples inoculated with L. monocytogenes and air-packed with the Zn-MgO NPs-alginate nanobiocomposite film showed no bacterial proliferation at 4 °C during 4 days. In the same condition, L. monocytogenes growth in control contaminated samples packed with alginate film alone. Our results suggest that Zn-MgO nanoparticles can extend the shelf-life of cold-smoked salmon samples.

12.
Beilstein J Nanotechnol ; 11: 899-910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566440

RESUMEN

A series of Zn1- x Mg x O thin films with the composition range x = 0.00-0.40 has been prepared by sol-gel spin coating on Si substrates with a post-deposition thermal treatment in the temperature range of 400-650 °C. The morphology of the films was investigated by scanning electron microscopy and atomic force microscopy while their light emission properties were studied by photoluminescence spectroscopy under excitation at 325 nm. It was found that annealing at 500 °C leads to the production of macroscopically homogeneous wurtzite phase films, while thermal treatment at higher or lower temperature results in the degradation of the morphology, or in the formation of ZnO particles embedded into the ZnMgO matrix, respectively. Local compositional fluctuations leading to the formation of deep band tails in the gap were deduced from photoluminescence spectra. A model for the band tail distribution in the bandgap is proposed as a function of the alloy composition. Thin films were also prepared by aerosol spray pyrolysis deposition using the same sol-gel precursors for the purpose of comparison. The prepared films were tested for photodetector applications.

13.
ACS Appl Mater Interfaces ; 7(37): 20600-6, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26325521

RESUMEN

Mixed-phase ZnMgO (m-ZMO) thin films with a single absorption edge tuning from ∼3.9 to ∼4.8 eV were realized on a-face sapphire (a-Al2O3) by plasma-assisted molecular beam epitaxy. The small lattice mismatch of both ZnO and MgO with a-Al2O3 should be responsible for the single and controllable absorption edge. Metal-semiconductor-metal (MSM) photodetectors were fabricated based on these m-ZMO films, and the devices have the single cutoff wavelength, which can be tuned from 335 to 275 nm. These devices possess low dark current (78 pA for m-Z0.67M0.33O, 11 pA for m-Z0.59M0.41O, and 4 pA for m-Z0.39M0.61O at 40 V) and high responsivity (434 A/W for m-Z0.67M0.33O, 89.8 A/W for m-Z0.59M0.41O, and 3.7 A/W for m-Z0.39M0.61O at 40 V). Further response study reveals that the 90-10% decay time of m-Z0.67M0.33O, m-Z0.59M0.41O, and m-Z0.39M0.61O is around 37, 30, and 0.7 ms, respectively. Large amounts of heterojunction interfaces between wurtzite ZMO and cubic rock-salt ZMO could be responsible for the low dark current and high responsivity of our mixed-phase devices. The excellent comprehensive performance of m-ZMO UV photodetectors on a-Al2O3 suggests that m-ZMO UV photodetectors should have great applied potential.

14.
J Nanopart Res ; 15(5): 1595, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23710129

RESUMEN

Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals-with the length of tetrapod legs about 100 nm and the diameter about 10 nm-were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size ~50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA