Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanotechnology ; 34(32)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37156233

RESUMEN

Inkjet printing, capable of rapid and template-free fabrication with high resolution and low material waste, is a promising method to construct electrochemical biosensor devices. However, the construction of fully inkjet-printed electrochemical biosensor remains a challenge owing to the lack of appropriate inks, especially the sensing inks of bioactive materials. Herein, we demonstrate a fully inkjet-printed, integrated and multiplexed electrochemical biosensor by combining rationally designed nanoparticle Inks. The stable gold (Au) nanoparticles ink with lower sintering temperature is prepared by using L-cysteine as stabilizer, and it is used to print the interconnects, the counter electrodes, and the working electrodes. The SU-8 ink is used to serve as dielectric layer for the biosensor, whereas the silver electrode is printed on the Au electrode by using commercially silver nanoparticles ink before it is chlorinated to prepare Ag/AgCl reference electrode. Moreover, we synthesize an inkjet-printable and electroactive ink, by the 'one-pot method', which is composed of conductive poly 6-aminoindole (PIn-6-NH2) and gold-palladium (Au-Pd) alloy nanoparticle (Au-Pd@PIn-6-NH2) to enhance the sensing performance of gold electrode towards hydrogen peroxide (H2O2). Especially, the amino groups in PIn-6-NH2can be further used to immobilizing glucose oxidase (GOx) and lactic acid oxidase (LOx) by glutaraldehyde to prepare printable sensing ink for the detection of glucose and lactate. The fully inkjet-printed electrochemical biosensor enabled by advanced inks can simultaneously detect glucose and lactate with good sensitivity and selectivity, as well as facile and scalable fabrication, showing great promise for metabolic monitoring.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Tinta , Plata , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Glucosa , Oro , Lactatos
2.
Small ; 16(1): e1905924, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31805222

RESUMEN

Layered semiconductors have attracted significant attention due to their diverse physical properties controlled by composition and the number of stacked layers. Herein, large crystals of the ternary layered semiconductor chromium thiophosphate (CrPS4 ) are prepared by a vapor transport synthesis. Optical properties are determined using photoconduction, absorption, photoreflectance, and photoacoustic spectroscopy exposing the semiconducting properties of the material. A simple, one-step protocol for mechanical exfoliation onto a transmission electron microscope grid is developed, and multiple layers are characterized by advanced electron microscopy methods, including atomic resolution elemental mapping confirming the structure by directly showing the positions of the columns of different elements' atoms. CrPS4 is also liquid exfoliated, and in combination with colloidal graphene, an ink-jet-printed photodetector is created. This all-printed graphene/CrPS4 /graphene heterostructure detector demonstrates a specific detectivity of 8.3 × 108 (D*). This study shows a potential application of both bulk crystal and individual flakes of CrPS4 as active components in light detection, when introduced as ink-printable moieties with a large benefit for manufacturing.

3.
Adv Sci (Weinh) ; 11(26): e2400479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696643

RESUMEN

Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

4.
Small Methods ; 7(10): e2300664, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37381687

RESUMEN

Inkjet-printing is considered an emerging manufacturing process for developing perovskite solar cells (PSCs) with low material wastes and high production throughput. Up-to-now, all case studies on inkjet-printed PSCs are based on the exploitation of toxic solvents and/or high-molarity perovskite precursor inks that are known to enable the development of high-efficiency photovoltaics (PVs). The present study provides a new insight for developing lower-toxicity, high performance and stable (for more than 2 months) inkjet-printable perovskite precursor inks for fully ambient air processed PSCs. Using an ink composed of a green low vapor pressure noncoordinating solvent and only 0.8 m of perovskite precursors, the feasibility of fabricating high-quality and with minimum coffee-ring defects, annealing-free perovskite absorbent layers under ambient atmosphere is demonstrated. Noteworthily, the PSCs fabricated using the industry-compatible carbon-based hole transport material free architecture and the proposed ink present an efficiency >13% that is considered on the performance records for the under-consideration PV architecture employing an inkjet-printed active layer. Outstanding is also found the stability of the devices under the conditions determined by the ISOS-D-1 protocol (T95  = 1000 h). Finally, the perspective of upscaling PSCs to the mini-module level (100 cm2 aperture area) is demonstrated, with the upscaling losses to be as low as 8.3%rel dec-1 per upscaled active area.

5.
Nanomaterials (Basel) ; 12(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35808124

RESUMEN

A memristor is a fundamental electronic device that operates like a biological synapse and is considered as the solution of classical von Neumann computers. Here, a fully printed and flexible memristor is fabricated by depositing a thin film of metal-non-metal (chromium-nitrogen)-doped titanium dioxide (TiO2). The resulting device exhibited enhanced performance with self-rectifying and forming free bipolar switching behavior. Doping was performed to bring stability in the performance of the memristor by controlling the defects and impurity levels. The forming free memristor exhibited characteristic behavior of bipolar resistive switching with a high on/off ratio (2.5 × 103), high endurance (500 cycles), long retention time (5 × 103 s) and low operating voltage (±1 V). Doping the thin film of TiO2 with metal-non-metal had a significant effect on the switching properties and conduction mechanism as it directly affected the energy bandgap by lowering it from 3.2 eV to 2.76 eV. Doping enhanced the mobility of charge carriers and eased the process of filament formation by suppressing its randomness between electrodes under the applied electric field. Furthermore, metal-non-metal-doped TiO2 thin film exhibited less switching current and improved non-linearity by controlling the surface defects.

6.
ACS Appl Mater Interfaces ; 14(7): 9697-9710, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142483

RESUMEN

Many commercially available pH sensors are fabricated with a glass membrane as the sensing component because of several advantages of glass-based electrodes such as versatility, high accuracy, and excellent stability in various conditions. However, because of their bulkiness and poor mechanical properties, conventional glass-based sensors are not ideal for wearable or flexible applications. Here, we report for the first time the fabrication of a flexible glass-based pH sensor suitable for biomedical and environmental applications where flexibility and stability of the sensor are critical for long-term and real-time monitoring. The sensor was fabricated via a simple and facile approach using the cold atmospheric plasma technique in which a pH sensitive silica coating was deposited from a siloxane precursor onto a carbon electrode. In order to increase the sensitivity and stability of the sensor, we employed a postprocessing step which involves annealing of the silica coated electrode at elevated temperatures. This process was optimized to ensure that the crucial properties such as porosity and hydration functionality were balanced to obtain the best and most reliable sensitivity of the sensor. Our sensitivity test results indicated that these sensors exhibit excellent and stable sensitivity with a slope of about 48 mV/pH (r2 = 0.998) and selectivity across a pH range of 4 to 10 in the presence of various cations. The optimized sensor has shown stable sensitivity for a long period of time (30 h of immersion) and in different bending conditions. We demonstrate in this investigation that this flexible cost-effective pH sensor can withstand the sterilization process resulting from ultraviolet radiation and shows repeatable sensitivity with less than ±5 mV potential drift from the sensitivity values of the standard optimized sensor.

7.
Macromol Biosci ; 20(11): e2000147, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32662225

RESUMEN

Mechanoreceptors in human skin possess high sensitivity, wide sensing range, and high sensing resolution for external stimuli. Several attempts have been made to implement electronic skin (e-skin) that can mimic human skin. However, previous attempts are limited by the fundamental resolution problem arising from the use of film-like materials generated through pouring and spinning processes. Here, an all-printed e-skin based on deformable ionic mechanotransducer array (IMA) inspired by the physiological tactile sensing mechanism and the geometric features of mechanoreceptors in human skin is described. First, an ionic mechanotransduction channel is emulated with a piezocapacitive ionic mechanosensory system that engages in ion migration when the polymer matrix is deformed under a mechanical non-equilibrium state. Furthermore, the versatile shapes of the artificial mechanotransducer are tuned by the printing process variables, which results in high sensitivity (2.65 nF kPa-1 ) and high resolution (13.22 cm-2 ) of the device. It is demonstrated that this IMA is fully bio-inspired by the mechanotransduction and papillary structure of the mechanoreceptors. A high-resolution e-skin with a deformable and transparent IMA, which is fabricated by an all-printing methodology, will open up a new market in the field of soft and stretchable sensory platforms.


Asunto(s)
Mecanotransducción Celular , Impresión , Dispositivos Electrónicos Vestibles , Electroquímica , Iones , Presión , Temperatura , Factores de Tiempo
8.
ACS Appl Mater Interfaces ; 11(44): 41531-41543, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31597420

RESUMEN

Silver ink is the most widely used conductive material for printing electrodes in the fabrication of all-printed ion gel gated transistors because of their high conductivity and low cost. However, electrochemical instability of printed silver electrodes is generally one of the biggest issues, whether it is in air where silver gets oxidized or in a moisture environment where electrochemical migration occurs. Notwithstanding, the electrochemical stability of printed silver electrodes in ion gel medium has not been studied so far. In this work, we studied the electrochemical instabilities of printed silver electrodes in fully printed ion gel gated single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) and developed some strategies to overcome these issues. All-printed ion gel-based p-type SWCNT TFTs were employed to investigate the impact of electrochemical instabilities on the electrical behavior of printed SWCNT TFTs. The results have demonstrated that printed silver was unstable at anodic and cathodic polarization because of the corrosion by the ionic liquid. Besides, anodic corrosion of silver source/drain electrodes was shown to be responsible for the electrical failure of printed SWCNT TFTs in both the linear and saturated regime. These issues were completely resolved when preventing printed silver electrodes from coming into direct contact with ion gels. For example, ion gels were partially printed in device channels to avoid contacting the printed silver source and drain electrodes. At the same time, silver side-gate electrodes were replaced by inkjet-printed PEDOT:PSS electrodes to avoid gate electrode-related instabilities. Consequently, all-printed electrochemically stable SWCNT TFTs fabricated were obtained with enhanced performance of higher ION/IOFF ratios (105 to 106), smaller subthreshold slopes (∼70 mV/dec), and smaller hysteresis (ΔV = 0.025 V) at gate voltages from 1.2 to -0.5 V. Additionally, the polarity of all-printed SWCNT TFTs was converted from the p-channel to ambipolar while achieving lower leakage currents.

9.
ACS Appl Mater Interfaces ; 10(26): 22408-22418, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29893115

RESUMEN

Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes, and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO)-based-diffused a-IGZO-ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping-mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS-based logic circuits have also been demonstrated toward new-generation portable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA