Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101408

RESUMEN

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Asunto(s)
Arrestina , Receptor Cannabinoide CB1 , Transducción de Señal , Arrestina/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Microscopía por Crioelectrón , Receptor Cannabinoide CB1/metabolismo , Humanos , Animales , Línea Celular
2.
Cell ; 186(22): 4956-4973.e21, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37852260

RESUMEN

The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.


Asunto(s)
Anafilatoxinas , Receptores de Complemento , Transducción de Señal , Anafilatoxinas/metabolismo , Complemento C3a/metabolismo , Inmunidad Innata , Receptores de Complemento/metabolismo , Humanos , Animales , Ratones
3.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37146613

RESUMEN

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestinas , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Membrana Dobles de Lípidos , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular
4.
Cell ; 185(24): 4560-4573.e19, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36368322

RESUMEN

Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with ß-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in ß-arrestin recruitment and GPCR-ß-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for ß-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of ß-arrestin and stabilize GPCR-ß-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-ß-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for ß-arrestin recruitment, this provides a mechanism for ß-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.


Asunto(s)
Arrestinas , Fosfatidilinositoles , beta-Arrestinas/metabolismo , Fosfatidilinositoles/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483373

RESUMEN

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Asunto(s)
Fosfopéptidos , Receptores Acoplados a Proteínas G , Fosfopéptidos/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
6.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002796

RESUMEN

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Asunto(s)
Mutación con Ganancia de Función/genética , Obesidad/patología , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal , Adulto , Anciano , Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , AMP Cíclico/metabolismo , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/metabolismo , beta-Arrestinas/metabolismo
8.
Cell ; 176(3): 468-478.e11, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30639099

RESUMEN

"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.


Asunto(s)
Angiotensinas/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Arrestinas/metabolismo , Línea Celular , Humanos , Ligandos , Conformación Proteica , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Espectroscopía de Pérdida de Energía de Electrones/métodos , beta-Arrestinas/metabolismo
9.
Cell ; 170(3): 457-469.e13, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753425

RESUMEN

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.


Asunto(s)
Arrestinas/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Cromatografía Liquida , Humanos , Ratones , Modelos Moleculares , Fosforilación , Ratas , Rodopsina/metabolismo , Alineación de Secuencia , Espectrometría de Masas en Tándem , Rayos X
10.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244255

RESUMEN

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Asunto(s)
Fosfopéptidos , Receptores CCR5 , Humanos , Fosforilación , beta-Arrestinas/metabolismo , Fosfopéptidos/metabolismo , Receptores CCR5/metabolismo , Línea Celular
11.
Trends Biochem Sci ; 49(6): 520-531, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643023

RESUMEN

G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by ß-arrestin (ßarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these ßarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.


Asunto(s)
Endosomas , Receptores Acoplados a Proteínas G , Transducción de Señal , Endosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , beta-Arrestinas/metabolismo
12.
Annu Rev Physiol ; 86: 1-25, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029388

RESUMEN

The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.


Asunto(s)
Analgésicos Opioides , Transducción de Señal , Humanos , Analgésicos Opioides/efectos adversos , Tolerancia a Medicamentos
13.
Proc Natl Acad Sci U S A ; 121(29): e2407744121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985766

RESUMEN

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here, we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals an additional mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.


Asunto(s)
Membrana Celular , Simulación de Dinámica Molecular , Receptores de Glutamato Metabotrópico , Humanos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/genética , Membrana Celular/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Unión Proteica , Células HEK293 , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Transducción de Señal
14.
Trends Biochem Sci ; 47(7): 570-581, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396120

RESUMEN

Three classes of G-protein-coupled receptor (GPCR) partners - G proteins, GPCR kinases, and arrestins - preferentially bind active GPCRs. Our analysis suggests that the structures of GPCRs bound to these interaction partners available today do not reveal a clear conformational basis for signaling bias, which would have enabled the rational design of biased GRCR ligands. In view of this, three possibilities are conceivable: (i) there are no generalizable GPCR conformations conducive to binding a particular type of partner; (ii) subtle differences in the orientation of individual residues and/or their interactions not easily detectable in the receptor-transducer structures determine partner preference; or (iii) the dynamics of GPCR binding to different types of partners rather than the structures of the final complexes might underlie transducer bias.


Asunto(s)
Arrestinas , Receptores Acoplados a Proteínas G , Arrestinas/química , Arrestinas/metabolismo , Ligandos , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
15.
Annu Rev Pharmacol Toxicol ; 63: 491-515, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36170657

RESUMEN

In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that µ-opioid receptor agonists that selectively activate G protein- over ß-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the µ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the µ-opioid receptor and other opioid receptor subtypes.


Asunto(s)
Analgésicos Opioides , Transducción de Señal , Humanos , Analgésicos Opioides/efectos adversos , Proteínas de Unión al GTP/metabolismo , Dolor/tratamiento farmacológico , beta-Arrestinas/metabolismo
16.
EMBO Rep ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242774

RESUMEN

Phosphorylated residues of G protein-coupled receptors bind to the N-domain of arrestin, resulting in the release of its C-terminus. This induces further allosteric conformational changes, such as polar core disruption, alteration of interdomain loops, and domain rotation, which transform arrestins into the receptor-activated state. It is widely accepted that arrestin activation occurs by conformational changes propagated from the N- to the C-domain. However, recent studies have revealed that binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the C-domain transforms arrestins into a pre-active state. Here, we aimed to elucidate the mechanisms underlying PIP2-induced arrestin pre-activation. We compare the conformational changes of ß-arrestin-2 upon binding of PIP2 or phosphorylated C-tail peptide of vasopressin receptor type 2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). Introducing point mutations on the potential routes of the allosteric conformational changes and analyzing these mutant constructs with HDX-MS reveals that PIP2-binding at the C-domain affects the back loop, which destabilizes the gate loop and ßXX to transform ß-arrestin-2 into the pre-active state.

17.
Mol Cell ; 70(3): 473-487.e6, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727618

RESUMEN

Most G protein-coupled receptors (GPCRs) signal through both heterotrimeric G proteins and ß-arrestins (ßarr1 and ßarr2). Although synthetic ligands can elicit biased signaling by G protein- vis-à-vis ßarr-mediated transduction, endogenous mechanisms for biasing signaling remain elusive. Here we report that S-nitrosylation of a novel site within ßarr1/2 provides a general mechanism to bias ligand-induced signaling through GPCRs by selectively inhibiting ßarr-mediated transduction. Concomitantly, S-nitrosylation endows cytosolic ßarrs with receptor-independent function. Enhanced ßarr S-nitrosylation characterizes inflammation and aging as well as human and murine heart failure. In genetically engineered mice lacking ßarr2-Cys253 S-nitrosylation, heart failure is exacerbated in association with greatly compromised ß-adrenergic chronotropy and inotropy, reflecting ßarr-biased transduction and ß-adrenergic receptor downregulation. Thus, S-nitrosylation regulates ßarr function and, thereby, biases transduction through GPCRs, demonstrating a novel role for nitric oxide in cellular signaling with potentially broad implications for patho/physiological GPCR function, including a previously unrecognized role in heart failure.


Asunto(s)
Transducción de Señal/fisiología , beta-Arrestinas/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/fisiología , Femenino , Células HEK293 , Humanos , Inflamación/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(28): e2301934120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399373

RESUMEN

E3 ubiquitin ligase Mdm2 facilitates ß-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, ß-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the ß-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the ß-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of ß-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the ß-arrestin1 N-domain. The C-tail of ß-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of ß-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate ß-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on ß-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to ß-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of ß-arrestin1. These results show how the E3 ligase, Mdm2, interacts with ß-arrestins to promote the internalization of GPCRs.


Asunto(s)
Arrestinas , Ubiquitina-Proteína Ligasas , beta-Arrestinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Ubiquitinación , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Fosforilación
19.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844230

RESUMEN

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Asunto(s)
Arrestinas , Transducción de Señal , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulación Alostérica , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Fosforilación , Arrestina beta 2/metabolismo
20.
J Neurosci ; 44(36)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39089885

RESUMEN

Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.


Asunto(s)
Degeneración Retiniana , Rodopsina , Xenopus laevis , Animales , Rodopsina/metabolismo , Rodopsina/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Femenino , Masculino , Fototransducción , Luz/efectos adversos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , cis-trans-Isomerasas/metabolismo , cis-trans-Isomerasas/genética , Muerte Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA