RESUMEN
While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.
Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Kanamicina , Isoniazida/farmacología , Capreomicina , Amicacina/farmacología , Rifampin/farmacología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológicoRESUMEN
INTRODUCTION: The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS: As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS: A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS: Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Capreomicina/química , Capreomicina/uso terapéutico , Polvos/química , Péptidos Antimicrobianos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Aerosoles/química , Péptidos/farmacología , Inhaladores de Polvo Seco/métodos , Tamaño de la Partícula , Administración por InhalaciónRESUMEN
Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis , Amicacina/farmacología , Antituberculosos/farmacología , Capreomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genéticaRESUMEN
Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.
Asunto(s)
Aminoácidos , Péptido Sintasas , Péptido Sintasas/metabolismo , Capreomicina , Especificidad por Sustrato , Péptidos/químicaRESUMEN
BACKGROUND: As new drugs are developed for multidrug-resistant tuberculosis (MDR-TB), the role of currently used drugs must be reevaluated. METHODS: We combined individual-level data on patients with pulmonary MDR-TB published during 2009-2016 from 25 countries. We compared patients receiving each of the injectable drugs and those receiving no injectable drugs. Analyses were based on patients whose isolates were susceptible to the drug they received. Using random-effects logistic regression with propensity score matching, we estimated the effect of each agent in terms of standardized treatment outcomes. RESULTS: More patients received kanamycin (n = 4330) and capreomycin (n = 2401) than amikacin (n = 2275) or streptomycin (n = 1554), opposite to their apparent effectiveness. Compared with kanamycin, amikacin was associated with 6 more cures per 100 patients (95% confidence interval [CI], 4-8), while streptomycin was associated with 7 (95% CI, 5-8) more cures and 5 (95% CI, 4-7) fewer deaths per 100 patients. Compared with capreomycin, amikacin was associated with 9 (95% CI, 6-11) more cures and 5 (95% CI, 2-8) fewer deaths per 100 patients, while streptomycin was associated with 10 (95% CI, 8-13) more cures and 10 (95% CI, 7-12) fewer deaths per 100 patients treated. In contrast to amikacin and streptomycin, patients treated with kanamycin or capreomycin did not fare better than patients treated with no injectable drugs. CONCLUSIONS: When aminoglycosides are used to treat MDR-TB and drug susceptibility test results support their use, streptomycin and amikacin, not kanamycin or capreomycin, are the drugs of choice.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Aminoglicósidos/uso terapéutico , Antituberculosos/farmacología , Capreomicina/farmacología , Capreomicina/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI ) enzymes, which 2'-O-methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I ) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL-8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild-type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.
Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Biopelículas , Células CACO-2 , Campylobacter jejuni/genética , Capreomicina , Células Epiteliales , Regulación Bacteriana de la Expresión Génica , Genes de ARNr/genética , Humanos , Macrófagos , Metilación , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Células RAW 264.7 , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Virulencia , Factores de Virulencia/genéticaRESUMEN
Despite the WHO's call for universal drug susceptibility testing for all patients being evaluated for tuberculosis (TB), a lack of rapid diagnostic tests which can fully describe TB resistance patterns is a major challenge in ensuring that all persons diagnosed with drug-resistant TB are started on an appropriate treatment regime. We evaluated the accuracy of the Akonni Biosystems XDR-TB TruArray and lateral-flow cell (XDR-LFC), a novel multiplex assay to simultaneously detect mutations across seven genes that confer resistance to both first- and second-line anti-TB drugs. The XDR-LFC includes 271 discrete three-dimensional gel elements with target-specific probes for identifying mutations in katG, inhA promoter, and ahpC promoter (isoniazid), rpoB (rifampin), gyrA (fluoroquinolones), rrs and eis promoter (kanamycin), and rrs (capreomycin and amikacin). We evaluated XDR-LFC performance with 87 phenotypically and genotypically characterized clinical Mycobacterium tuberculosis isolates. The overall assay levels of accuracy for mutation detection in specific genes were 98.6% for eis promoter and 100.0% for the genes katG, inhA promoter, ahpC promoter, rpoB, gyrA, and rrs The sensitivity and specificity against phenotypic reference were 100% and 100% for isoniazid, 98.4% and 50% for rifampin (specificity increased to 100% once the strains with documented low-level resistance mutations in rpoB were excluded), 96.2% and 100% for fluoroquinolones, 92.6% and 100% for kanamycin, 93.9% and 97.4% for capreomycin, and 80% and 100% for amikacin. The XDR-LFC solution appears to be a promising new tool for accurate detection of resistance to both first- and second-line anti-TB drugs.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Laboratorios , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40⯵g/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10⯵g/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.
Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Capreomicina/farmacología , Biología Computacional , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genómica , Lípidos de la Membrana/metabolismo , Metabolómica , Metiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/metabolismo , ProteómicaRESUMEN
AIMS: Predicting bacterial resistance provides valuable information that can assist in clinical decisions. With recent advances in whole genome sequencing technology, the detection of antibiotic resistance (AR) proteins directly from genomic data is becoming feasible. AR genes/proteins can be identified using best-hit methods that work by comparing candidate sequences with known AR genes in public databases. However, these approaches may fail to detect resistance genes with sequences that differ significantly from known sequences. Our goal is to develop a machine learning technique to accurately predict capreomycin resistance in Mycobacteria with low false discovery rates. METHODS AND RESULTS: We present a stacked ensemble learning model as an alternative to traditional DNA sequence alignment-based methods using optimal features generated from the physicochemical, evolutionary and secondary structure properties of protein sequences. We train logistic regression, C5.0 and support vector machine (SVM) algorithms as our base classifiers, and our stacked ensemble predictors combine the results from the base classifiers to achieve higher accuracy. Compared with our most accurate base classifier (SVM), our most accurate stacked ensemble predictor increases training accuracy by 2·43%. Our stacked ensemble predictors achieve test accuracy up to 81·25%. CONCLUSIONS: We developed a stacked ensemble model to predict capreomycin resistance for Mycobacteria with an accuracy >80% using protein sequences with sequence similarity ranging between 10% and 70%. This performance cannot be achieved with best-hit methods due to differences in sequence similarity. SIGNIFICANCE AND IMPACT OF THE STUDY: Today an estimated one-half million cases of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) occur annually worldwide at a great cost. Because capreomycin is a second-line drug used to treat drug-resistant TB, the ability to use a machine learning approach to classify capreomycin-resistant TB in a timely manner is crucial for the successful treatment of MDR or XDR TB.
Asunto(s)
Capreomicina/farmacología , Análisis Mutacional de ADN/métodos , Farmacorresistencia Microbiana/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Secuencia de Aminoácidos , Genes Bacterianos/genética , Humanos , Aprendizaje Automático , Mycobacterium tuberculosis/efectos de los fármacos , Estructura Secundaria de Proteína , Tuberculosis Resistente a Múltiples Medicamentos/diagnósticoRESUMEN
Amikacin, kanamycin, and capreomycin are among the most important second-line drugs for multidrug-resistant tuberculosis. Although amikacin and kanamycin are administered at the same dose and show the same pharmacokinetics, they have different WHO breakpoints, suggesting that the two drugs have different MICs. The aim of this study was to investigate possible differences in MICs between the aminoglycosides and capreomycin. Using the direct concentration method, a range of concentrations of amikacin, kanamycin, and capreomycin (0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, and 64.0 mg/liter) were tested against 57 clinical Mycobacterium tuberculosis strains. The 7H10 agar plates were examined for mycobacterial growth after 14 days. At 2 mg/liter, 48 strains (84%) were inhibited by amikacin and only 5 strains (9%) were inhibited by kanamycin (P < 0.05, Wilcoxon signed-rank test). The median MICs of amikacin, kanamycin, and capreomycin were 2, 4, and 8 mg/liter, respectively. No difference in amikacin, kanamycin, and capreomycin MIC distributions was observed between multidrug-resistant strains and fully susceptible strains. The results indicate that amikacin is more active than kanamycin and capreomycin against M. tuberculosis with the absolute concentration method. Determination of the impact of this difference on clinical outcomes in daily practice requires a prospective study, including pharmacokinetic and pharmacodynamic evaluations.
Asunto(s)
Amicacina/farmacología , Capreomicina/farmacología , Kanamicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Glicopéptidos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples MedicamentosRESUMEN
A bioanalytical method was developed and validated for the quantification of capreomycin (Cm) analogs, Cm IA and Cm IB, in human plasma. This implemented ion-pairing solid phase extraction, followed by ion-pairing high-performance liquid chromatography, with tandem mass spectrometry detection. Chromatographic separation was achieved using a Discovery C18 , 5 µm, 4.6 × 50 mm analytical column. An isocratic mobile phase consisting of water and acetonitrile with 0.1% formic acid and 4mm heptafluorobutyric acid (80:20; v/v) was used at a flow-rate of 500 µL/min. An AB Sciex API 3000 mass spectrometer at unit resolution, in multiple reaction monitoring mode, was used for detection. Electrospray ionization was used for ion production. The method was successfully validated for the range 469-30,000 ng/mL for Cm IA and for Cm IB, with cefotaxime as the internal standard. The within- and between-day precision determinations for Cm IA and IB, expressed as the percentage coefficient of variation, were < 20.0% at the lower limit of quantification (LLOQ) and < 8.2% at all other test concentrations. Recovery of both analogs was > 72.3% and reproducible at the low, medium and high end of the calibration range. No significant matrix effects were observed for the analyte. The assay performed well when applied to clinical samples generated from children in a clinical multidrug resistant tuberculosis research study in South Africa.
RESUMEN
Capreomycin (CAP) is an important second-line drug for multidrug-resistant tuberculosis. To further define the drug resistance mechanism of CAP, a Mycobacterium smegmatis transposon mutant library was constructed using Tn5 transposon for screening isolates with enhanced CAP resistance. A mutant (named C4) with fourfold increased CAP resistance was isolated and characterized. Tn5 was found to be inserted into MSMEG_0841, an annotated pseudogene. However, knockout demonstrated that MSMEG_0841 was not responsible for CAP resistance. We further sequenced the whole genome of C4 and found an A to G substitution in the overlap region between tlyA and ppnK, which leads a stop codon mutation in upstream tlyA and a T2A mutation in downstream ppnK. Mutation in the overlap might confer the dysfuction of both genes. tlyA is a known gene involved in CAP action. Overexpression of ppnK in both Escherichia coli and M. smegmatis confer subtle susceptible to CAP. Taken together, our study found that a novel mutation involved in CAP resistance.
Asunto(s)
Proteínas Bacterianas/genética , Capreomicina , Farmacorresistencia Bacteriana/genética , Mycobacterium/genética , Secuencia de Bases , Técnicas de Inactivación de Genes , Genoma Bacteriano/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación Missense/genética , Oligonucleótidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADNRESUMEN
In recent years, the bacterium responsible for tuberculosis has been increasing its resistance to antibiotics resulting in new multidrug resistant Mycobacterium tuberculosis (MR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study we use several analytical techniques including NMR, FT-ICR, TOF-MS, LC-MS and UV/Vis to study the copper-capreomycin complex. The copper (II) cation is used as a carrier for the antibiotic capreomycin. Once this structure was studied using NMR, FT-ICR, and MALDI-TOF-MS, the NIH-NIAID tuberculosis cell line for several Tb strains (including antibiotic resistant strains) were tested against up to seven variations of the copper-capreomycin complex. Different variations of copper improved the efficacy of capreomycin against Tb up to 250 fold against drug resistant strains of Tb.
Asunto(s)
Capreomicina/química , Capreomicina/farmacología , Cobre , Farmacorresistencia Bacteriana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Antibióticos Antituberculosos/química , Antibióticos Antituberculosos/farmacología , Cobre/química , Iones , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
As one of the factors affecting the treatment outcomes, drug tolerance in mycobacteriosis has not been paid due attention. Genome-wide association studies on 607 Mycobacterium tuberculosis clinical isolates with phenotypic drug susceptibility test data revealed that a K114N mutation on the rv2820c gene was highly enriched in capreomycin-resistant isolates (32/213, 15.02%). However, the mutation was also observed in capreomycin-sensitive isolates (10/394, 2.53%). In most cases (31/42, 73.81%), the rv2820c K114N mutation occurred in isolates with the known capreomycin resistance conferring mutation rrs A1401G. In contrast, the general frequency of the rv2820c K114N mutation was low in 7061 genomes downloaded from the National Center for Biotechnology Information database. To determine the impact of this mutation on the antimycobacterial activity of capreomycin, the intact rv2820c gene and the rv2820c K114N mutant were over-expressed in Mycobacterium smegmatis (Ms), and the results of susceptibility tests showed that the rv2820c K114N mutation did not affect the minimum inhibition concentration (MIC) of capreomycin. Subsequently, the data of time-kill assays showed that, it took only 2 h of capreomycin treatment (40 µg/ml, 5 × MIC) to kill 99.9% bacterial cells of Ms MC2155 pMV261::rv2820cH37Rv, while it took 6 h to achieve that for Ms MC2155 pMV261::rv2820cK114N. Taken together, these data suggested that the rv2820c K114N mutation is related with capreomycin tolerance, which merits further investigation.
Asunto(s)
Capreomicina , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis , Capreomicina/farmacología , Capreomicina/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efectos de los fármacos , Antituberculosos/farmacología , FenotipoRESUMEN
Following the introduction of all-oral treatment regimens for patients with drug-resistant tuberculosis (TB), second-line injectable drug applications have been reduced in the last few years. However, they are still important for anti-TB therapy. This study aims to analyze the occurrence of amikacin- and capreomycin-related adverse drug reactions (ADR) in patients with multidrug-resistant tuberculosis (MDR-TB) and evaluate the role of multiple patient-, disease-, and therapy-related factors on the frequency of the observed adverse events. In addition, the possible role of genetic risk factors was studied by full-length mitochondrial DNA sequencing. Toward this aim, we retrospectively evaluated 47 patients with MDR-TB who received amikacin and/or capreomycin. In total, 16 (34.0%) patients developed ototoxicity and 13 (27.7%) developed nephrotoxicity, including 3 (6.4%) patients who experienced both adverse events. Ototoxicity development was more common in patients who received amikacin. No other factors showed a significant impact. Nephrotoxicity was likely associated with previous renal health impairment. Full mitochondrial genome sequencing did not reveal any specific ADR-associated variants, and results showed no differences in adverse event occurrence for any specific variants, mutation count, or mitochondrial haplogroup. The absence of the previously reported ototoxicity-related mtDNA variants in our patients with ototoxicity and nephrotoxicity highlighted the complex nature of the ADR occurrence.
RESUMEN
L-2,3-Diaminopropionic acid (L-Dap) is a nonproteinogenic amino acid that plays as an important role as a building block in the biosynthesis of several natural products, including capreomycin, viomycin, zwittermicin, staphyloferrin and dapdiamide. A previous study reported that CmnB and CmnK are two enzymes that are involved in the formation of L-Dap in the biosynthesis of capreomycin. CmnB catalyzes the condensation reaction of O-phospho-L-serine and L-glutamic acid to generate N-(1-amino-1-carboxyl-2-ethyl)glutamic acid, which subsequently undergoes oxidative hydrolysis via CmnK to generate the product L-Dap. Here, the crystal structure of CmnB in complex with the reaction intermediate PLP-α-aminoacrylate is reported at 2.2â Å resolution. Notably, CmnB is the second known example of a PLP-dependent enzyme that forms a monomeric structure in crystal packing. The crystal structure of CmnB also provides insights into the catalytic mechanism of the enzyme and supports the biosynthetic pathway of L-Dap reported in previous studies.
Asunto(s)
Aminoácidos , Capreomicina , Cristalografía por Rayos X , beta-Alanina , Ácido Glutámico/metabolismoRESUMEN
CmnC is an α-ketoglutarate (α-KG)-dependent non-heme iron oxygenase involved in the formation of the l-capreomycidine (l-Cap) moiety in capreomycin (CMN) biosynthesis. CmnC and its homologues, VioC in viomycin (VIO) biosynthesis and OrfP in streptothricin (STT) biosynthesis, catalyze hydroxylation of l-Arg to form ß-hydroxy l-Arg (CmnC and VioC) or ß,γ-dihydroxy l-Arg (OrfP). In this study, a combination of biochemical characterization and structural determination was performed to understand the substrate binding environment and substrate specificity of CmnC. Interestingly, despite having a high conservation of the substrate binding environment among CmnC, VioC, and OrfP, only OrfP can hydroxylate the substrate enantiomer d-Arg. Superposition of the structures of CmnC, VioC, and OrfP revealed a similar folds and overall structures. The active site residues of CmnC, VioC, and OrfP are almost conserved; however Leu136, Ser138, and Asp249 around the substrate binding pocket in CmnC are replaced by Gln, Gly, and Tyr in OrfP, respectively. These residues may play important roles for the substrate binding. The mutagenesis analysis revealed that the triple mutant CmnCL136Q,S138G,D249Y switches the substrate stereoselectivity from l-Arg to d-Arg with â¼6% relative activity. The crystal structure of CmnCL136Q,S138G,D249Y in complex with d-Arg revealed that the substrate loses partial interactions and adopts a different orientation in the binding site. This study provides insights into the enzyme engineering to α-KG non-heme iron oxygenases for adjustment to the substrate stereoselectivity and development of biocatalysts.
RESUMEN
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with Mycobacterium tuberculosis. More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic. Finally, future applications of these drugs are considered in the context of their recent removal from the World Health Organization's List of Essential Medicines.
RESUMEN
It is well-known that aminoglycoside antibiotics can cause significant hearing loss and vestibular deficits that have been described in animal studies and in clinical reports. The purpose of this review is to summarize relevant preclinical and clinical publications that discuss the ototoxicity of non-aminoglycoside antibiotics. The major classes of antibiotics other than aminoglycosides that have been associated with hearing loss in animal studies and in patients are discussed in this report. These antibiotics include: capreomycin, a polypeptide antibiotic that has been used to treat patients with drug-resistant tuberculosis, particularly in developing nations; the macrolides, including erythromycin, azithromycin and clarithromycin; and vancomycin. These antibiotics have been associated with ototoxicity, particularly in neonates. It is critical to be aware of the ototoxic potential of these antibiotics since so much attention has been given to the ototoxicity of aminoglycoside antibiotics in the literature.