Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 119(2): 1091-1111, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642374

RESUMEN

Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.


Asunto(s)
Genoma de Planta , Genoma de Planta/genética , Filogenia , Chlorophyta/genética , Chlorophyta/fisiología , Regeneración/genética , Bryopsida/genética , Bryopsida/fisiología , Bryopsida/citología , Cinesinas/genética , Cinesinas/metabolismo , Miosinas/genética , Miosinas/metabolismo
2.
Bioresour Technol ; 401: 130757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688392

RESUMEN

The photosynthetic autotrophic production of microalgae is limited by the effective supply of carbon and light energy, and the production efficiency is lower than the theoretical value. Represented by methanol, C1 compounds have been industrially produced by artificial photosynthesis with a solar energy efficiency over 10%, but the complexity of artificial products is weak. Here, based on a construction of chloroplast factory, green microalgae Chlamydomonas reinhardtii CC137c was modified for the bioconversion of formate for biomass production. By screening the optimal combination of chloroplast transport peptides, the cabII-1 cTP1 fusion formate dehydrogenase showed significant enhancement on the conversion of formate with a better performance in the maintenance of light reaction activity. This work provided a new way to obtain bioproducts from solar energy and CO2 with potentially higher-than-nature efficiency by the artificial-natural hybrid photosynthesis.


Asunto(s)
Chlamydomonas reinhardtii , Cloroplastos , Formiatos , Cloroplastos/metabolismo , Formiatos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fotosíntesis , Formiato Deshidrogenasas/metabolismo , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA