RESUMEN
Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied, and few laboratory models exist that reflect the biology of the human disease. Here, we describe a biobank of patient-derived organoid lines that recapitulates the histopathological and molecular diversity of human bladder cancer. Organoid lines can be established efficiently from patient biopsies acquired before and after disease recurrence and are interconvertible with orthotopic xenografts. Notably, organoid lines often retain parental tumor heterogeneity and exhibit a spectrum of genomic changes that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Our studies indicate that patient-derived bladder tumor organoids represent a faithful model system for studying tumor evolution and treatment response in the context of precision cancer medicine.
Asunto(s)
Neoplasias de la Vejiga Urinaria/patología , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Mutación , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Medicina de Precisión , Trasplante Heterólogo , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.
Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Evolución Clonal , Adulto , Anciano , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Movimiento Celular , Exoma , Femenino , Humanos , Persona de Mediana Edad , Mutación , Invasividad Neoplásica , Análisis de Secuencia de ADN , Análisis de la Célula IndividualRESUMEN
High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.
Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análisis por Conglomerados , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Pérdida de Heterocigocidad , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/inmunología , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudio de Asociación del Genoma Completo , Humanos , Melanoma/genética , Melanoma/inmunología , Nivolumab , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T , TranscriptomaRESUMEN
Elicitation of VRC01-class broadly neutralizing antibodies (bnAbs) is an appealing approach for a preventative HIV-1 vaccine. Despite extensive investigations, strategies to induce VRC01-class bnAbs and overcome the barrier posed by the envelope N276 glycan have not been successful. Here, we inferred a high-probability unmutated common ancestor (UCA) of the VRC01 lineage and reconstructed the stages of lineage maturation. Env immunogens designed on reverted VRC01-class bnAbs bound to VRC01 UCA with affinity sufficient to activate naive B cells. Early mutations defined maturation pathways toward limited or broad neutralization, suggesting that focusing the immune response is likely required to steer B cell maturation toward the development of neutralization breadth. Finally, VRC01 lineage bnAbs with long CDR H3s overcame the HIV-1 N276 glycan barrier without shortening their CDR L1, revealing a solution for broad neutralization in which the heavy chain, not CDR L1, is the determinant to accommodate the N276 glycan.
Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Polisacáridos/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Secuencia de Aminoácidos , Anticuerpos Monoclonales/clasificación , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/clasificación , Anticuerpos Neutralizantes/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Sitios de Unión/genética , Anticuerpos ampliamente neutralizantes , Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Filogenia , Polisacáridos/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
Follicular lymphoma (FL) is an indolent B-cell neoplasm characterised by multistep evolution from premalignant precursor cells carrying the hallmark t(14;18) translocation in the majority of cases. In a new article in The Journal of Pathology, samples of relapsed early-stage FL - primary manifestation and relapse with or without transformation - initially treated with radiotherapy only, were studied for clonal relationships and evolution. Using somatic mutations and the rearranged immunoglobulin sequences as markers, the majority of paired lymphoma samples showed so-called branched evolution from a common, possibly premalignant progenitor cell, with both shared and private mutations. In addition, clonally unrelated cases were identified. This and previous studies with similar findings clearly document that relapse or transformation of FL in many instances not necessarily represents a linear progression of disease due to acquisition of additional mutations and therapy resistance, but rather new outgrowths derived from a pool of clonally related, long-lived, and low proliferating precursor cells, or even unrelated second neoplasms. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Evolución Clonal , Linfoma Folicular , Linfoma Folicular/genética , Linfoma Folicular/patología , Humanos , Mutación , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Progresión de la EnfermedadRESUMEN
Lynch syndrome-associated endometrial cancer patients often present multiple synchronous tumors and this assessment can affect treatment strategies. We present a case of a 27-year-old woman with tumors in the uterine corpus, cervix, and ovaries who was diagnosed with endometrial cancer and exhibited cervical invasion and ovarian metastasis. Her family history suggested Lynch syndrome, and genetic testing identified a variant of uncertain significance, MLH1 p.L582H. We conducted immunohistochemical staining, microsatellite instability analysis, and Sanger sequencing for Lynch syndrome-associated cancers in three generations of the family and identified consistent MLH1 loss. Whole-exome sequencing for the corpus, cervical, and ovarian tumors of the proband identified a copy-neutral loss of heterozygosity (LOH) occurring at the MLH1 position in all tumors. This indicated that the germline variant and the copy-neutral LOH led to biallelic loss of MLH1 and was the cause of cancer initiation. All tumors shared a portion of somatic mutations with high mutant allele frequencies, suggesting a common clonal origin. There were no mutations shared only between the cervix and ovary samples. The profiles of mutant allele frequencies shared between the corpus and cervix or ovary indicated that two different subclones originating from the corpus independently metastasized to the cervix or ovary. Additionally, all tumors presented unique mutations in endometrial cancer-associated genes such as ARID1A and PIK3CA. In conclusion, we demonstrated clonal origin and genomic diversity in a Lynch syndrome-associated endometrial cancer, suggesting the importance of evaluating multiple sites in Lynch syndrome patients with synchronous tumors.
Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Endometriales , Homólogo 1 de la Proteína MutL , Neoplasias Primarias Múltiples , Adulto , Femenino , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Genómica , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/genética , Neoplasias Primarias Múltiples/genéticaRESUMEN
Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Invasividad Neoplásica , Ubiquitina-Proteína Ligasas , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Masculino , Femenino , Persona de Mediana Edad , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Anciano , Movimiento Celular/genéticaRESUMEN
Cancer originates from a single ancestral cell that acquires a driver mutation, which confers a growth or survival advantage, followed by the acquisition of additional driver mutations by descendant cells. Recently, it has become evident that somatic cell mutations accumulate in normal tissues with aging and exposure to environmental factors, such as alcohol, smoking, and UV rays, increases the mutation rate. Clones harboring driver mutations expand with age, leading to tissue remodeling. Lineage analysis of myeloproliferative neoplasms and der(1;16)-positive breast cancer revealed that driver mutations were acquired early in our lives and that the development of cancer takes decades, unveiling the previously unknown early process of cancer development. Evidence that clonal hematopoiesis affects various diseases, including nonneoplastic diseases, highlights the potential role of the identification and functional analysis of mutated clones in unraveling unknown pathologies. In this review, we summarize the recent updates on clonal expansion in normal tissues and the natural history of cancer revealed through lineage analysis of noncancerous and cancerous tissues.
Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Animales , Hematopoyesis Clonal/genética , Evolución ClonalRESUMEN
Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Pronóstico , Mutación , Genómica , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.
Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias Cutáneas , Humanos , Médula Ósea/patología , Células Dendríticas/metabolismo , Mutación , Leucemia Mieloide Aguda/patología , Neoplasias Hematológicas/patología , Neoplasias Cutáneas/patología , Trastornos Mieloproliferativos/patología , Proteínas Nucleares/genéticaRESUMEN
The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.
Asunto(s)
Variaciones en el Número de Copia de ADN , Programas Informáticos , Visualización de Datos , Genoma , Genómica/métodosRESUMEN
AIMS: Contralateral axillary lymph node metastasis (CAM) is a rare clinical condition in patients with breast cancer (BC). CAM can be either a locoregional event or a distant metastasis. Molecular application for clonal evolution in BC has not been reported in CAM cases. METHODS: We studied six patients with CAM with clinical, pathological and/or molecular evidence of distant metastasis; those patients had poor outcomes. RESULTS: Two cases with molecular analysis of paired primary and CAM established clonal evolution of the CAM with its corresponding primary with additional molecular alteration, increased tumour mutation burden, and copy number variations (CNVs) in the CAMs. Four cases containing alterations from genes potentially modulate chromatin organization, supporting chromatin and subsequent transcriptional signature changes are essential in CAM. Molecular analysis is critical to establish the connection between CAM and its primary counterpart. Distant CAM shows clonal evolution compared with its corresponding primary with additional molecular alterations, increased mutation burden and/or copy number variations. CONCLUSION: CAM should be evaluated individually and handled in a personalized fashion. Evidence of a true metastatic CAM can be supported by distant metastasis to other organs, specific morphological features and/or clonal evolution.
RESUMEN
We studied the incidence of relapse, transformation to myelodysplastic syndrome/acute myeloid leukemia, and survival in patients with aplastic anemia (AA) surviving more than 1 year after ATG/ALG-based immunosuppressive therapy (IST) between 1985 and 2020. Four-hundred seventy patients (413 adults and 57 children) were studied, and data were compared with 223 patients who underwent matched sibling donor transplant (MSD HSCT). Median follow-up is 50 months (12-359). Relapse occurred in 21.9% at a median time of 33.5 months (5-228) post IST. Twenty-six (5.5%) patients progressed to PNH, while 20 (4.3%) evolved to MDS/AML. Ten-year estimated overall survival (OS) is 80.9 ± 3% and was significantly better in patients without an event (85.1 ± 4%) compared to relapse (74.6% ± 6.2%) or clonal evolution (12.8% ± 11.8%) (p = 0.024). While the severity of AA (p = 0.011) and type of ATG (p = 0.028) used predicted relapse, only age at IST administration influenced clonal evolution (p = 0.018). Among HSCT recipients, relapse rates were 4.9% with no clonal evolution, and the 10-year OS was 94.5 ± 2%. In patients who survived 1 year following IST, outcomes were good except with clonal evolution to MDS/AML. These outcomes, however, were still inferior compared to matched sibling donor HSCT.
Asunto(s)
Anemia Aplásica , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Adulto , Niño , Humanos , Enfermedad Injerto contra Huésped/etiología , Estudios Retrospectivos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia de Inmunosupresión/efectos adversos , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/complicaciones , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/complicaciones , RecurrenciaRESUMEN
The JAK2 V617F is a prevalent driver mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs), significantly affecting disease progression, immunophenotype, and patient outcomes. The World Health Organization (WHO) guidelines highlight the JAK2 V617F mutation as one of the key diagnostic criterions for Ph-MPNs. In this study, we analyzed 283 MPN samples with the JAK2 V617F mutation to assess the effectiveness of three detection technologies: chip-based digital PCR (cdPCR), real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). Additionally, we investigated the relationship between JAK2 V617F mutant allele burden (% JAK2 V617F) and various laboratory characteristics to elucidate potential implications in MPN diagnosis. Our findings demonstrated high conformance of cdPCR with qPCR/NGS for detecting % JAK2 V617F, but the mutant allele burdens detected by qPCR/NGS were lower than those detected by cdPCR. Moreover, the cdPCR exhibited high sensitivity with a limit of detection (LoD) of 0.08% and a limit of quantification (LoQ) of 0.2% for detecting % JAK2 V617F in MPNs. Clinical implications were explored by correlating % JAK2 V617F with various laboratory characteristics in MPN patients, revealing significant associations with white blood cell counts, lactate dehydrogenase levels, and particularly ß2-microglobulin (ß2-MG) levels. Finally, a case report illustrated the application of cdPCR in detecting low-allele burdens in a de novo chronic myeloid leukemia (CML) patient with a hidden JAK2 V617F subclone, which expanded during tyrosine kinase inhibitor (TKI) treatment. Our findings underscore the superior sensitivity and accuracy of cdPCR, making it a valuable tool for early diagnosis and monitoring clonal evolution.
Asunto(s)
Alelos , Evolución Clonal , Janus Quinasa 2 , Trastornos Mieloproliferativos , Janus Quinasa 2/genética , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/diagnóstico , Femenino , Persona de Mediana Edad , Masculino , Anciano , Evolución Clonal/genética , Adulto , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Anciano de 80 o más Años , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodosRESUMEN
Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.
Asunto(s)
Evolución Clonal , Resistencia a Antineoplásicos , Genómica , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Humanos , Resistencia a Antineoplásicos/genética , Evolución Clonal/genética , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacologíaRESUMEN
Clonal evolution (CE) is a driving force behind the development and progression of acute myeloid leukemia (AML). Advances in molecular and cytogenetic assays have improved the depth and breadth of detection of CE in AML, which is defined here as a detected change in cytogenetic or molecular profile at relapsed or refractory (RR) disease. In this study, we demonstrate the clinical impact of CE in a cohort of patients with RR AML treated between 2013 and 2023. We discovered CE is significantly more frequent in relapsed disease (58.2%, [46.6%, 69.2%]) than in refractory disease (21.1%, [14.4%, 29.2%], p < 0.001). CE negatively impacts prognosis when detected by conventional karyotyping in refractory disease (4.2 vs. 13.9 months, p < 0.011). In contrast with prior literature, CE had no impact on overall survival if detected in relapsed disease. Surprisingly, those who achieved negative measurable residual disease (MRD) were no more likely to eliminate their original clone than those who did not (p = 1). We found several cytogenetic and molecular signatures which may predispose to CE: aberrations of chromosome 17, trisomy 8, TP53, KRAS, and FLT3-TKD. Finally, physicians were less likely to retreat those with CE with IC after receiving IC as first-line therapy (35.0% vs. 70.9%, p = 0.004). This study illustrates the role of CE in chemotherapy-resistant AML; we identify unique cytogenetic and molecular signatures that define a subset of patients associated with a dismal prognosis. As next-generation sequencing panels expand and new methods to characterize cytogenetic abnormalities emerge, our findings establish a basis for future studies investigating the prognostic and therapeutic impact of CE.
RESUMEN
The translocation t(14;18)(q32:q21)/IGH::BCL2 occurs at the pre-B stage of B-cell development in the bone marrow and is insufficient for malignant transformation, although it leads to the formation of in situ follicular B-cell neoplasia (ISFN). Despite that, the translocation is the genetic hallmark of follicular lymphoma (FL), it occurs infrequently in metachronous/synchronous lymphomas, including extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (EMZL), mantle cell lymphoma, and Hodgkin's lymphoma. In each of these scenarios, the two lymphomas often appear to be clonally related by analyses of IGH::BCL2 and/or rearranged IG genes. However, it remains largely unknown whether one lymphoma originates from the other or they develop independently. We studied five cases of metachronous EMZL and FL. In four cases, the two lymphomas were clonally related, as shown by identical IGH::BCL2 and/or rearranged IG genes or shared mutations. There were common and unique mutations between the paired EMZL and FL, indicating that they developed independently from a common premalignant cell population, harbouring IGH::BCL2 in three cases. Furthermore, case 1 presented with three metachronous FLs, and all of them originated from a common precursor cell population via divergent evolution. Our findings highlight the multi-malignant potential of IGH::BCL2-positive B-cells. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Linfoma de Células B de la Zona Marginal , Linfoma Folicular , Humanos , Adulto , Linfoma Folicular/genética , Linfoma de Células B de la Zona Marginal/genética , Translocación Genética , Mutación , Proteínas Proto-Oncogénicas c-bcl-2/genéticaRESUMEN
The presence and role of microbes in human cancers has come full circle in the last century. Tumors are no longer considered aseptic, but implications for cancer biology and oncology remain underappreciated. Opportunities to identify and build translational diagnostics, prognostics, and therapeutics that exploit cancer's second genome-the metagenome-are manifold, but require careful consideration of microbial experimental idiosyncrasies that are distinct from host-centric methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer bacteria necessitate fundamental changes in describing clonal evolution and selection, reflecting bidirectional interactions with non-human residents. Reconsidering cancer clonality as a multispecies process similarly holds key implications for understanding metastasis and prognosing therapeutic resistance while providing rational guidance for the next generation of bacterial cancer therapies. Guided by these new findings and challenges, this Review describes opportunities to exploit cancer's metagenome in oncology and proposes an evolutionary framework as a first step towards modeling multispecies cancer clonality. Also see the video abstract here: https://youtu.be/-WDtIRJYZSs.
Asunto(s)
Evolución Clonal , Neoplasias , Evolución Biológica , Evolución Clonal/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologíaRESUMEN
Acute myeloid leukemia (AML) is an aggressive hematologic neoplasia with a complex polyclonal architecture. Among driver lesions, those involving the FLT3 gene represent the most frequent mutations identified at diagnosis. The development of tyrosine kinase inhibitors (TKIs) has improved the clinical outcomes of FLT3-mutated patients (Pt). However, overcoming resistance to these drugs remains a challenge. To unravel the molecular mechanisms underlying therapy resistance and clonal selection, we conducted a longitudinal analysis using a single-cell DNA sequencing approach (MissionBioTapestri® platform, San Francisco, CA, USA) in two patients with FLT3-mutated AML. To this end, samples were collected at the time of diagnosis, during TKI therapy, and at relapse or complete remission. For Pt #1, disease resistance was associated with clonal expansion of minor clones, and 2nd line TKI therapy with gilteritinib provided a proliferative advantage to the clones carrying NRAS and KIT mutations, thereby responsible for relapse. In Pt #2, clonal architecture was less complex, and 1st line TKI therapy with midostaurin was able to eradicate the leukemic clones. Our results corroborate previous findings about clonal selection driven by TKIs, highlighting the importance of a deeper characterization of individual clonal architectures for choosing the best treatment plan for personalized approaches aimed at optimizing outcomes.