Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.756
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513663

RESUMEN

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/ultraestructura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmisión Sináptica , Imidazoles/química , Sarcosina/análogos & derivados , Piperidinas/química
2.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774677

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Anciano , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo
3.
Cell ; 185(26): 5028-5039.e13, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516855

RESUMEN

Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Ligandos , Encéfalo , Envejecimiento , Lípidos , Biomarcadores
4.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768006

RESUMEN

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , Animales , Humanos , Gripe Humana/patología , Ratones , Microglía/patología , Vaina de Mielina , Neoplasias/patología , SARS-CoV-2
5.
Cell ; 176(1-2): 43-55.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30528430

RESUMEN

Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment. VIDEO ABSTRACT.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Metotrexato/efectos adversos , Oligodendroglía/efectos de los fármacos , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Quimioterapia , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Metotrexato/farmacología , Ratones , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(2): e2214634120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595679

RESUMEN

The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer's disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Adulto , Humanos , Disfunción Cognitiva/patología , Encéfalo/patología , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos
7.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830757

RESUMEN

It was proposed that a reorganization of the relationships between cognitive functions occurs in dementia, a vision that surpasses the idea of a mere decline of specific domains. The complexity of cognitive structure, as assessed by neuropsychological tests, can be captured by exploratory graph analysis (EGA). EGA was applied to the neuropsychological assessment of people (humans) with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease (AD; total N = 638). Both sexes were included. In AD, memory scores detach from the other cognitive functions, and memory subdomains reduce their reciprocal relation. SCD showed a pattern of segregated neuropsychological domains, and MCI showed a noisy and less stable pattern. Results suggest that AD drives a reorganization of cognitive functions toward a less-fractionated architecture compared with preclinical conditions. Cognitive functions show a reorganization that goes beyond the performance decline. Results also have clinical implications in test interpretations and usage.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Pruebas Neuropsicológicas , Humanos , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/fisiopatología , Masculino , Femenino , Disfunción Cognitiva/psicología , Disfunción Cognitiva/fisiopatología , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Red Nerviosa/fisiopatología
8.
J Biol Chem ; 300(7): 107474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879011

RESUMEN

Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.


Asunto(s)
Encéfalo , Calcio , Sordera , Glicoproteínas de Membrana , Mutación Missense , Neuronas , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Humanos , Sordera/metabolismo , Sordera/genética , Sordera/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Neuronas/metabolismo , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Calcio/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/metabolismo , Ratones , Glicosilación
9.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865202

RESUMEN

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Asunto(s)
Disfunción Cognitiva , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Hipotiroidismo , Neurogranina , Efectos Tardíos de la Exposición Prenatal , Animales , Neurogranina/metabolismo , Neurogranina/genética , Hipotiroidismo/metabolismo , Femenino , Embarazo , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Regulación hacia Abajo , Hipocampo/metabolismo , Masculino , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones Endogámicos C57BL , Plasticidad Neuronal
10.
FASEB J ; 38(1): e23351, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085181

RESUMEN

Heart failure (HF) is often accompanied by cognitive impairment (CI). Brain-derived neurotrophic factor (BDNF) deficiency is closely associated with CI. However, the role and mechanism of BDNF in HF with CI is still not fully understood. Here, the case-control study was designed including 25 HF without CI patients (HF-NCI) and 50 HF with CI patients (HF-CI) to investigate the predictive value of BDNF in HF-CI while animal and cell experiments were used for mechanism research. Results found that BDNF levels in serum neuronal-derived exosomes were downregulated in HF-CI patients. There was no significant difference in serum BDNF levels among the two groups. HF rats showed obvious impairment in learning and memory; also, they had reduced thickness and length of postsynaptic density (PSD) and increased synaptic cleft width. Expression of BDNF, TrkB, PSD95, and VGLUT1 was significantly decreased in HF rats brain. In addition, compared with sham rats, amino acids were significantly reduced with no changes in the acetylcholine and monoamine neurotransmitters. Further examination showed that the number of synaptic bifurcations and the expression of BDNF, TrkB, PSD95, and VGLUT1 were all decreased in the neurons that interfered with BDNF-siRNA compared with those in the negative control neurons. Together, our results demonstrated that neuronal-derived exosomal BDNF act as effective biomarkers for prediction of HF-CI. The decrease of BDNF in the brain triggers synaptic structural damage and a decline in amino acid neurotransmitters via the BDNF-TrkB-PSD95/VGLUT1 pathway. This discovery unveils a novel pathological mechanism underlying cognitive impairment following heart failure.


Asunto(s)
Disfunción Cognitiva , Insuficiencia Cardíaca , Humanos , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aminoácidos/metabolismo , Estudios de Casos y Controles , Disfunción Cognitiva/metabolismo , Receptor trkB/genética , Insuficiencia Cardíaca/metabolismo , Hipocampo/metabolismo
11.
FASEB J ; 38(1): e23317, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095240

RESUMEN

Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder and is the most common etiological cause of dementia. Consequently, it has severe burden on its patients and on their caregivers and represents a global health concern. Clinical investigations have indicated that a dysregulation of peripheral T cell immune homeostasis may be involved in the pathogenesis of AD, as well as in the early stages of AD, characterized by mild cognitive impairment (MCI). However, the characteristics and concomitant feasibility of the use of T-cell receptor (TCR) typing for disease diagnosis remains largely unknown. We employed a high-throughput sequencing and multidimensional bioinformatics analyses for the identification of TCR repertoires present in peripheral blood samples of 10 patients with amnestic MCI (aMCI), 10 patients with AD, and 10 healthy controls (HCs). Based on the characteristics of the TCR repertoires in the amount and diversity of combinations of V-J, the spectrum of immune defense, and differentially expressed genes (DEGs), single and specific TCR profiles were observed in the patient samples of aMCI and AD compared to profiles of HCs. In particular, the diversity of TCR clonotypes manifested a pattern of "decreased first and then increased" pattern during the progression from aMCI to AD, a pattern that was not observed in HC samples. Additionally, a total of 46 and 35 amino acid CDR3 sequences with consistent and reverse expressive abundance with diversity of TCR clonotypes were identified, respectively. Taken together, we provide novel and essential preliminary evidence demonstrating the presence of diversity of T cell repertoires from differentially expressed V-J gene segments and amino acid clonotypes using peripheral blood samples from patients with AD, aMCI, and from HC. Such findings have the potential to reveal potential mechanisms through which aMCI progresses to AD and provide a reference for the future development of immune-related diagnoses and therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Linfocitos T , Disfunción Cognitiva/diagnóstico , Receptores de Antígenos de Linfocitos T , Aminoácidos
12.
Brain ; 147(6): 1937-1952, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38279949

RESUMEN

In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Enfermedad de Parkinson , Humanos , Prosencéfalo Basal/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Animales , Neuronas Colinérgicas/metabolismo
13.
Brain ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013020

RESUMEN

Brain inflammation, with an increased density of microglia and macrophages, is an important component of Alzheimer's disease (AD) and a potential therapeutic target. However, it is incompletely characterized, particularly in patients whose disease begins before the age of 65 years and, thus, have few co-pathologies. Inflammation has been usefully imaged with translocator protein (TSPO) positron emission tomography (PET), but most inflammation PET tracers cannot image subjects with a low-binder TSPO rs6971 genotype. In an important development, participants with any TSPO genotype can be imaged with a novel tracer, [11C]ER176, that has a high binding potential and a more favorable metabolite profile than other TSPO tracers currently available. We applied [11C]ER176 to detect brain inflammation in mild cognitive impairment (MCI) caused by early-onset AD. Furthermore, we sought to correlate the brain localization of inflammation, volume loss, elevated Aß and tau. We studied brain inflammation in 25 patients with early-onset amnestic MCI (average age 59 ± 4.5 years, 10 women) and 23 healthy controls (average age 65 ± 6.0 years, 12 women), both groups with a similar proportion of all three TSPO-binding affinities. [11C]ER176 total distribution volume (VT), obtained with an arterial input function, was compared across patients and controls using voxel-wise and region-wise analyses. In addition to inflammation PET, most MCI patients had Aß (n=23), and tau PET (n=21). For Aß and tau tracers, standard uptake value ratios (SUVRs) were calculated using cerebellar grey matter as region of reference. Regional correlations among the three tracers were determined. Data were corrected for partial volume effect. Cognitive performance was studied with standard neuropsychological tools. In MCI caused by early-onset AD, there was inflammation in the default network, reaching statistical significance in precuneus and lateral temporal and parietal association cortex bilaterally, and in the right amygdala. Topographically, inflammation co-localized most strongly with tau (r= 0.63 ± 0.24). This correlation was higher than the co-localization of Aß with tau (r= 0.55±0.25) and of inflammation with Aß (0.43±0.22). Inflammation co-localized least with atrophy (-0.29±0.26). These regional correlations could be detected in participants with any of the three rs6971 TSPO polymorphisms. Inflammation in AD-related regions correlated with impaired cognitive scores. Our data highlight the importance of inflammation, a potential therapeutic target, in the AD process. Furthermore, they support the notion that, as shown in experimental tissue and animal models, the propagation of tau in humans is associated with brain inflammation.

14.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743817

RESUMEN

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

15.
Brain ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709856

RESUMEN

Cerebral small vessel disease (SVD) is known to contribute to cognitive impairment, apathy, and gait dysfunction. Although associations between cognitive impairment and either apathy or gait dysfunction have been shown in SVD, the inter-relations among these three clinical features and their potential common neural basis remains unexplored. The dopaminergic meso-cortical and meso-limbic pathways have been known as the important brain circuits for both cognitive control, emotion regulation and motor function. Here, we investigated the potential inter-relations between cognitive impairment, apathy, and gait dysfunction, with a specific focus on determining whether these clinical features are associated with damage to the meso-cortical and meso-limbic pathways in SVD. In this cross-sectional study, we included 213 participants with SVD in whom MRI scans and comprehensive neurobehavioral assessments were administered. These assessments comprised of six clinical measures: processing speed, executive function, memory, apathy (based on the Apathy Evaluation Scale), and gait function (based on the time and steps in Timed Up and Go test). We reconstructed five tracts connecting ventral tegmental area (VTA) and the dorsolateral prefrontal cortex (dlPFC), ventral lateral PFC (vlPFC), medial orbitofrontal cortex (mOFC), anterior cingulate cortex (ACC) and nucleus accumbens (NAc) within meso-cortical and meso-limbic pathways using diffusion weighted imaging. The damage along the five tracts was quantified using the free water (FW) and FW-corrected mean diffusivity (MD-t) indices. Furthermore, we explored the inter-correlations among the six clinical measures and identified their common components using principal component analysis (PCA). Linear regression analyses showed that higher FW values of tracts within meso-cortical pathways were related to these clinical measures in cognition, apathy, and gait (all P-corrected values < 0.05). PCA showed strong inter-associations among these clinical measures and identified a common component wherein all six clinical measures loaded on. Higher FW values of tracts within meso-cortical pathways were related to the PCA-derived common component (all P-corrected values < 0.05). Moreover, FW values of VTA-ACC tract showed the strongest contribution to the PCA-derived common component over all other neuroimaging features. In conclusion, our study showed that the three clinical features (cognitive impairment, apathy, and gait dysfunction) of SVD are strongly inter-related and that the damage in meso-cortical pathway could be the common neural basis underlying the three features in SVD. These findings advance our understanding of the mechanisms behind these clinical features of SVD and have the potential to inform novel management and intervention strategies for SVD.

16.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915268

RESUMEN

Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.

17.
Brain ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38562097

RESUMEN

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them. To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level - OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01). We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus. In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients' cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency. This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

18.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112592

RESUMEN

Cancer-associated cognitive impairment is a significant challenge for individuals who have survived breast cancer, affecting their quality of life. In this study, we conducted an inaugural comprehensive Mendelian randomization analysis discerning the causal relationship between breast cancer, including its two subtypes, and the cerebral cortical structure. Our analysis indicated that estrogen receptor-negative breast cancer significantly decreased surface area (ß = -593.01 mm2, 95% CI: -1134.9 to -51.1 mm2, P = 0.032). At the regional level, estrogen receptor-negative breast cancer showed a significant association with surface area and thickness in 17 cortical regions. These regions included the insula, posterior cingulate, superior frontal, precuneus, fusiform, lateral occipital, and rostral middle frontal. Specifically, estrogen receptor-negative breast cancer had a significant impact on decreasing the surface area of the insula without considering global weight (ß = -14.09 mm2, 95% CI: -22.91 to -5.27 mm2, P = 0.0017). The results from meta-analysis and LD Score Regression provide support for our findings. This investigation unveils the correlations between breast cancer, its various subcategories, and the cerebral cortical structure. Notably, breast cancer of the estrogen receptor-negative variety may elicit more widespread cerebral atrophy.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Neoplasias de la Mama Triple Negativas , Humanos , Calidad de Vida , Encéfalo , Receptores de Estrógenos
19.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112670

RESUMEN

Presbycusis is characterized by high-frequency hearing loss and is closely associated with cognitive decline. Previous studies have observed functional reorganization of gray matter in presbycusis, but the information transmission between gray matter and white matter remains ill-defined. Using resting-state functional magnetic resonance imaging, we investigated differences in functional connectivity (GM-GM, WM-WM, and GM-WM) between 60 patients with presbycusis and 57 healthy controls. Subsequently, we examined the correlation between these connectivity differences with high-frequency hearing loss as well as cognitive impairment. Our results revealed significant alterations in functional connectivity involving the body of the corpus callosum, posterior limbs of the internal capsule, retrolenticular region of the internal capsule, and the gray matter regions in presbycusis. Notably, disrupted functional connectivity was observed between the body of the corpus callosum and ventral anterior cingulate cortex in presbycusis, which was associated with impaired attention. Additionally, enhanced functional connectivity was found in presbycusis between the internal capsule and the ventral auditory processing stream, which was related to impaired cognition in multiple domains. These two patterns of altered functional connectivity between gray matter and white matter may involve both bottom-up and top-down regulation of cognitive function. These findings provide novel insights into understanding cognitive compensation and resource redistribution mechanisms in presbycusis.


Asunto(s)
Disfunción Cognitiva , Presbiacusia , Sustancia Blanca , Humanos , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Presbiacusia/diagnóstico por imagen , Presbiacusia/patología , Pérdida Auditiva de Alta Frecuencia/patología , Disfunción Cognitiva/patología , Sustancia Blanca/patología , Encéfalo
20.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38383723

RESUMEN

Mild cognitive impairment (MCI) is the initial phase of Alzheimer's disease (AD). The cognitive decline is linked to abnormal connectivity between different regions of the brain. Most brain network studies fail to consider the changes in brain patterns and do not reflect the dynamic pathological characteristics of patients. Therefore, this paper proposes a method for constructing brain networks based on microstate sequences. It also analyzes the microstate temporal parameters and introduces a new feature, the brain homeostasis coefficient (Bhc), to quantify the stability of patient brain connections. The results showed that microstate class B parameters were higher in the MCI than in the HC group. Additionally, the Bhc values in most channels of the MCI and AD groups were lower than those of the HC group, with the most significant differences observed in the right frontal lobe. These differences were statistically significant (P < 0.05). The findings indicate that connectivity in the right frontal lobe may be most severely disrupted in patients with cognitive impairment. Furthermore, the Montreal Cognitive Assessment score showed a strong positive correlation with Bhc. This suggests that Bhc could be a novel biomarker for evaluating cognitive function in patients with cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA