Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 29(1): 80, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811901

RESUMEN

BACKGROUND: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Estrés del Retículo Endoplásmico , Mitocondrias , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Transportador 2 de Sodio-Glucosa , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Canagliflozina/farmacología , Células HT29 , Células HCT116 , Sirtuina 3/metabolismo , Sirtuina 3/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Glucosa/metabolismo
2.
J Enzyme Inhib Med Chem ; 39(1): 2337191, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38634597

RESUMEN

Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Fluorouracilo , Humanos , Masculino , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/farmacología , Hemo-Oxigenasa 1/antagonistas & inhibidores
3.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956926

RESUMEN

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Asunto(s)
Antineoplásicos , Receptores ErbB , Simulación del Acoplamiento Molecular , Naproxeno , Oxadiazoles , Receptores ErbB/antagonistas & inhibidores , Humanos , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Naproxeno/farmacología , Naproxeno/análogos & derivados , Naproxeno/química , Naproxeno/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proliferación Celular/efectos de los fármacos
4.
Exp Cell Res ; 417(1): 113211, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597299

RESUMEN

Different from the nucleolus-specific localization in some types of cancer cells, ribosomal L1 domain-containing protein 1 (RSL1D1) distributes throughout the nucleus in human colorectal cancer (CRC) cells. RSL1D1 directly interacts with DNA binding domain (aa 93-292) of wild-type p53 (p53-WT) and thereby recruits p53 to HDM2. The ensuing formation of RSL1D1/HDM2/p53 complex enhances p53 ubiquitination and decreases the protein level of p53 in CRC cells. In this study, we investigated the interaction between RSL1D1 and mutant p53 proteins. We first corroborated that aa 93-224 of p53 is a more precise domain for RSL1D1 binding and mutation in either aa 93-224 or aa 225-292 domain of p53 affects RSL1D1-p53 interaction. R175H mutated p53 does not interact with RSL1D1, whereas R273H mutated p53 still can bind to RSL1D1 but showing a remarkably decreased affinity than p53-WT. Although p53-R273H retains a weakened binding affinity with RSL1D1, it can hardly be recruited to HDM2 by RSL1D1 in HCT116 CRC cells. Accordingly, RSL1D1 loses its capacity to negatively regulate either R175H or R273H p53 mutant via directly interaction in HCT116 cells, thereby facilitating p53 mutants to accumulate and gain oncogenic function. Our findings help explain why mutant p53 proteins are more stable than p53-WT in CRC cells.


Asunto(s)
Neoplasias Colorrectales , Proteínas Gestacionales , Proteínas Ribosómicas , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN , Células HCT116 , Humanos , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas Gestacionales/química , Proteínas Gestacionales/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Biochem J ; 479(3): 305-325, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35029639

RESUMEN

Inhibitor of kappa B (IκB) kinase ß (IKKß) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKß in canonical NF-κB activation in colorectal cells using CRISPR-Cas9 knock-out cell lines, siRNA and selective IKKß inhibitors. IKKα and IKKß were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKß alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells, IKKß was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKß. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKß inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKß contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKß to date.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/genética , Sistemas CRISPR-Cas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Interleucina-1alfa/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/genética , Fosforilación/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047634

RESUMEN

Compound 6d, a spiroindoline compound, exhibits antiproliferative capability against cancer cell lines. However, the exact underlying mechanism of this compound-mediated inhibitory capability remains unclear. Here, we showed that compound 6d is an inhibitor of Bcl-2, which suppresses CRC growth by inducing caspase 3-mediated intrinsic apoptosis of mitochondria. Regarding the underlying mechanism, we identified HDAC6 as a direct substrate for caspase 3, and caspase 3 activation induced by compound 6d directly cleaves HDAC6 into two fragments. Moreover, the cleavage site was located at D1088 in the DMAD-S motif HDAC6. Apoptosis stimulated by compound 6d promoted autophagy initiation by inhibiting interaction between Bcl-2 and Beclin 1, while it led to the accumulation of ubiquitinated proteins and the reduction of autophagic flux. Collectively, our findings reveal that the Bcl-2-caspase 3-HDAC6 cascade is a crucial regulatory pathway of autophagy and identify compound 6d as a novel lead compound for disrupting the balance between apoptosis and autophagy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Neoplasias Colorrectales , Humanos , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Beclina-1/genética , Caspasa 3/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Histona Desacetilasa 6 , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838936

RESUMEN

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Tubulina (Proteína)/metabolismo , Puntos de Control del Ciclo Celular , Apoptosis , Moduladores de Tubulina/farmacología , Microtúbulos , Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Proliferación Celular
8.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298928

RESUMEN

The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
9.
BMC Cancer ; 22(1): 570, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597921

RESUMEN

BACKGROUND/AIM: To develop and validate a nebulizer device for anti-cancer research on pressurized intraperitoneal aerosol supply in a preclinical peritoneal metastases (PM) rat model. MATERIAL AND METHODS: For aerosol generation, an ultrasonic nebulizer (USN) was modified. Aerosol analyses were performed ex-vivo by laser diffraction spectrometry (LDS). Intraperitoneal (IP) 99mtechnetium sodium pertechnetate (99mTc) aerosol distribution and deposition were quantified by in-vivo single photon emission computed tomography (SPECT/CT) and compared to liquid IP instillation of equivalent volume/doses of 99mTc with and without capnoperitoneum. PM was induced by IP injection of HCT116-Luc2 human colon cancer cells in immunosuppressed RNU rats. Tumor growth was monitored by bioluminescence imaging (BLI), 18F-FDG positron emission tomography (PET) and tissues examination at necropsy. RESULTS: The USN was able to establish a stable and reproducible capnoperitoneum at a pressure of 8 to 10 mmHg. LDS showed that the USN provides a polydisperse and monomodal aerosol with a volume-weighted diameter of 2.6 µm. At a CO2 flow rate of 2 L/min with an IP residence time of 3.9 s, the highest drug deposition efficiency was found to be 15 wt.-%. In comparison to liquid instillation, nebulization showed the most homogeneous IP spatial drug deposition. Compared to BLI, 18F-FDG-PET was more sensitive to detect smaller PM nodules measuring only 1-2 mm in diameter. BLI, 18F-FDG PET and necropsy analyses showed relevant PM in all animals. CONCLUSIONS: The USN together with the PM rat model are suitable for robust and species-specific preclinical pharmacological studies regarding intraperitoneal delivery of pressurized aerosolized drugs and cancer research.


Asunto(s)
Neoplasias del Colon , Neoplasias Peritoneales , Aerosoles , Animales , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/tratamiento farmacológico , Fluorodesoxiglucosa F18 , Humanos , Nebulizadores y Vaporizadores , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/secundario , Ratas
10.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163511

RESUMEN

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Naftalenos/farmacología , Sirtuinas/antagonistas & inhibidores , Apoptosis , Benzamidas/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Naftalenos/química , Naftoles/química
11.
Mol Med ; 27(1): 23, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691630

RESUMEN

BACKGROUND: To investigate effect of microRNA-325-3p (miR-325-3p) on bone metastasis of colorectal cancer (CRC) and the precise role on osteoclastogenesis. METHODS: CT-26 cells were injected into tibias to establish bone metastatic model of CRC in vivo. AgomiR-325-3p or antagomir-325-3p were injected in tail-veins of Balb/c mice to interfere the osteoclastogenesis and bone metastasis of CRC. Safranin O and Fast Green staining examined the changes of trabecular area and TRAP staining examined the osteoclast number in bone metastasis of CRC. Real-time PCR was conducted to test the RNA level of miR-325-3p and mRNA levels of TRAP and Cathepsin K in osteoclast precursors (OCPs). Dual-luciferase reporter system was utilized to identify the direct target of miR-325-3p. Conditioned medium from CT-26 cells was collected to stimulate the OCPs during osteoclastogenesis induced by RANKL and M-CSF in vitro. Western blot analysis was performed to examine the protein level of S100A4 in OCPs after interfered by agomiR-325-3p or antagomir-325-3p cultured in CM or not. RESULTS: miR-325-3p downregulated in OCPs in CRC microenvironment both in vivo and in vitro. By luciferase activity assay, S100A4 was the target gene of miR-325-3p and the protein level of S100A4 in OCPs upregulated in CRC microenvironment. Overexpression of miR-325-3p inhibited the osteoclastogenesis of OCPs and it can be reversed after transfection with plasmid containing S100A4. Treatment with miR-325-3p can preserve trabecular area in bone metastasis of CRC. CONCLUSION: miR-325-3p can prevent osteoclast formation through targeting S100A4 in OCPs. Overexpression of miR-325-3p efficiently decreased the osteoclast number and attenuated bone resorption in bone metastasis of CRC.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Colorrectales/genética , MicroARNs , Osteogénesis/genética , Osteólisis/genética , Proteína de Unión al Calcio S100A4/genética , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Células Cultivadas , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Masculino , Ratones Endogámicos BALB C , Osteoclastos/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo
12.
BMC Cancer ; 21(1): 903, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364387

RESUMEN

BACKGROUND: 5-Fluorouracil (5-FU) is regarded as the first line treatment for colorectal cancer; however, its effectiveness is limited by drug resistance. The ultimate goal of cancer therapy is induction of cancer cell death to achieve an effective outcome with minimal side effects. The present work aimed to assess the anti-cancer activities of mitocans which can be considered as an effective anticancer drug due to high specificity in targeting cancer cells. METHODS: MTT (3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay was performed to determine the effects of our mitocans on cell viability and cell death. Apoptosis and necrosis, caspase 3 activity, mitochondrial membrane potential and ROS production in HT29 cell lines were analyzed by ApopNexin™ FITC/PI Kit, Caspase- 3 Assay Kit, MitoTracker Green and DCFH-DA, respectively. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes in HT29 cell lines. RESULTS: Treatment with mitocans (3Br-P + DCA) inhibited the growth of HT29. Moreover, 3Br-P + DCA significantly induced apoptosis and necrosis, activation of caspase 3 activity, depolarize the mitochondrial membrane potential, and ROS production. At a molecular level, 3Br-P + DCA treatment remarkably down-regulated the expression of Bcl-2, while up-regulated the expression of Bax. CONCLUSION: Mitocans, in particular the combined drug, 3Br-P + DCA, could be regarded and more evaluated as a safe and effective compound for CRC treatment. Targeting hexokinase and pyruvate dehydrogenase kinase enzymes may be an option to overcome 5-FU -mediated chemo-resistant in colorectal cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Dicloroacético/farmacología , Glucosa/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Piruvatos/farmacología , Antineoplásicos/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Sinergismo Farmacológico , Fluorouracilo , Células HT29 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Biológicos
13.
Mol Cell Biochem ; 476(2): 513-523, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33011952

RESUMEN

Nature polyphenols widely present in plants and foods are promising candidates in cancer chemotherapy. Emerging evidence has shown that plant polyphenols regulate the expression of miRNAs to exert the anti-Multidrug resistance (MDR) activity, which partly attributes to their regulation on miRNAs methylation. Our previous study found that bound polyphenol from foxtail millet bran (BPIS) had potential as an anti-MDR agent for colorectal cancer (CRC), but its mechanism remains unclear. The present findings demonstrated that BPIS upregulated the expression of miR-149 by reducing the methylation of its CpG islands, which subsequently induced the cell cycle arrest in G2/M phase, resulting in enhancing the chemo-sensitivity of HCT-8/Fu cells. Mechanically, BPIS and its active components (FA and p-CA) reduced miR-149 methylation by inhibiting the expression levels of DNA methyltransferases, promoting a remarkable increase of miR-149 expression. Further, the increased miR-149 induced cell cycle arrest in G2/M phase by inhibiting the expression of Akt, Cyclin B1 and CDK1, thus increasing the chemosensitivity of HCT-8/Fu cells. Additionally, a strong inducer of DNA de-methylation (5-aza-dc) treatment markedly increased the chemosensitivity of CRC through elevating miR-149 expression, which indicates the hypermethylation of miR-149 may be the key cause of drug resistance in CRC. The study indicates that the enhanced chemosensitivity of BPIS on CRC is mainly attributed to the increase of miR-149 expression induced by methylation inhibition.


Asunto(s)
Azacitidina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Metilación de ADN , MicroARNs/metabolismo , Polifenoles/farmacología , Setaria (Planta)/química , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Humanos , MicroARNs/genética
14.
J Math Biol ; 82(6): 55, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33945019

RESUMEN

This paper studies a system of Ordinary Differential Equations modeling a chemical reaction network and derives from it a simulation tool mimicking Loss of Function and Gain of Function mutations found in cancer cells. More specifically, from a theoretical perspective, our approach focuses on the determination of moiety conservation laws for the system and their relation with the corresponding stoichiometric surfaces. Then we show that Loss of Function mutations can be implemented in the model via modification of the initial conditions in the system, while Gain of Function mutations can be implemented by eliminating specific reactions. Finally, the model is utilized to examine in detail the G1-S phase of a colorectal cancer cell.


Asunto(s)
Neoplasias Colorrectales , Mutación con Pérdida de Función , Modelos Biológicos , Neoplasias Colorrectales/patología , Simulación por Computador , Humanos , Cinética
15.
Phytother Res ; 35(7): 3875-3885, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33792984

RESUMEN

Brassinin (BSN), a precursor of phytoalexins, extracted from Chinese cabbage has been reported to act as a promising anti-neoplastic agent. However, the effects of BSN on colon cancer cells and its underlying mechanisms have not been fully elucidated. This study aimed at investigating the anti-neoplastic impact of BSN and its possible synergistic effect with paclitaxel on colon cancer cells. The effect of BSN on Janus-activated kinases (JAKs)/signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways and its downstream functions was deciphered using diverse assays in colon carcinoma cells. We found that BSN displayed significant cytotoxic effect and suppressed cell proliferation on colon carcinoma cells. Additionally, it was noted that BSN modulated oncogenic gene expression and induced apoptosis through down regulating multiple oncogenic signaling cascades such as JAKs/STAT3 and PI3K/Akt/mTOR simultaneously. Besides, BSN-paclitaxel combination significantly increased cytotoxicity and induced apoptosis synergistically as compared with individual treatment of both the agents. Overall, our findings indicate that BSN may be a novel candidate for anti-colon cancer targeted therapy.


Asunto(s)
Neoplasias del Colon , Indoles/farmacología , Paclitaxel , Transducción de Señal/efectos de los fármacos , Tiocarbamatos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Humanos , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
16.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805673

RESUMEN

5-Fluorouracil (5-FU) is a cornerstone drug used in the treatment of colorectal cancer (CRC). However, the development of resistance to 5-FU and its analogs remain an unsolved problem in CRC treatment. In this study, we investigated the molecular mechanisms and tumor biological aspects of 5-FU resistance in CRC HCT116 cells. We established an acquired 5-FU-resistant cell line, HCT116RF10. HCT116RF10 cells were cross-resistant to the 5-FU analog, fluorodeoxyuridine. In contrast, HCT116RF10 cells were collaterally sensitive to SN-38 and CDDP compared with the parental HCT16 cells. Whole-exome sequencing revealed that a cluster of genes associated with the 5-FU metabolic pathway were not significantly mutated in HCT116 or HCT116RF10 cells. Interestingly, HCT116RF10 cells were regulated by the function of thymidylate synthase (TS), a 5-FU active metabolite 5-fluorodeoxyuridine monophosphate (FdUMP) inhibiting enzyme. Half of the TS was in an active form, whereas the other half was in an inactive form. This finding indicates that 5-FU-resistant cells exhibited increased TS expression, and the TS enzyme is used to trap FdUMP, resulting in resistance to 5-FU and its analogs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Timidilato Sintasa/genética , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Floxuridina/farmacología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Irinotecán/farmacología , Compuestos de Platino/farmacología , Timidilato Sintasa/metabolismo , Secuenciación del Exoma
17.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443626

RESUMEN

Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Células HT29 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
18.
Mol Cell Biochem ; 468(1-2): 153-168, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32222879

RESUMEN

Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess anti-tumorigenic effects; however, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate whether Cer and PA could induce switching of macrophage polarization from the tumorigenic M2- towards the pro-inflammatory M1-phenotype, and whether this consequently altered the potential of colorectal cancer cells to undergo epithelial-mesenchymal transition (EMT), a hallmark of tumor progression. Our study showed that Cer- and PA-treated macrophages increased expression of the macrophage 1 (M1)-marker CD68 and secretion of IL-12 and attenuated expression of the macrophage 2 (M2)-marker CD163 and IL-10 secretion. Moreover, Cer and PA abolished M2 macrophage-induced EMT and migration of colorectal cancer cells. At the molecular level, this coincided with inhibition of SNAI1 and vimentin expression and upregulation of E-cadherin. Furthermore, Cer and PA attenuated expression levels of IL-10 in colorectal cancer cells co-cultured with M2 macrophages and downregulated STAT3 and NF-κB expression. For the first time, our findings suggest the presence of an IL-10-STAT3-NF-κB signaling axis in colorectal cancer cells co-cultured with M2 macrophages, mimicking the tumor microenvironment. Importantly, PA and Cer were powerful inhibitors of this signaling axis and, consequently, EMT of colorectal cancer cells. These results contribute to our understanding of the immunological mechanisms that underlie the anti-tumorigenic effects of lipids for future combination with drugs in the therapy of colorectal carcinoma.


Asunto(s)
Ceramidas/farmacología , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Macrófagos/metabolismo , Ácido Palmítico/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Interleucina-10/farmacología , Activación de Macrófagos/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Receptores de Superficie Celular/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Biotechnol Lett ; 42(5): 683-695, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32030527

RESUMEN

OBJECTIVE: To develop a new technique for improved cell surface protein detection and analysis by combining chemical labeling with mild cell lysis using model HCT 116 colorectal cancer cells. RESULTS: We found that Dounce homogenization by hand, rather than the typical sonication or syringe lysis method, recovered surface/membrane proteins more consistently and effectively. This was indicated by marker membrane proteins such as claudin-4 and EGFR (epidermal growth factor receptor) that span the typical 20-200 kD range. As monitored by Western blotting (WB), the Dounce lysis method combined with cell surface biotinylation showed consistent recovery of the marker proteins claudin-4 and EGFR. This lysis method was combined with a cell surface biotinylation strategy to enrich cell surface/membrane proteins using affinity bead-based purification with four-fold less cells compared to prior work. Subsequent LC/MS/MS analysis identified 49 additional surface/membrane proteins for the first time from HCT 116 cells. CONCLUSION: This combination of methodologies may fit into an advanced workflow for identifying new and elusive cell surface proteins. It can increase the protein coverage for biomarker discovery for colorectal cancer or other cancers. This new detection/analysis approach may also promote new applications in surface display systems as well as cell screening, selection, and binding processes.


Asunto(s)
Biotinilación/métodos , Neoplasias Colorrectales/metabolismo , Proteínas de la Membrana/análisis , Cromatografía Liquida , Células HCT116 , Humanos , Proteínas de la Membrana/química , Proteómica/métodos , Espectrometría de Masas en Tándem
20.
J Microencapsul ; 37(4): 305-313, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32148140

RESUMEN

Aims: The study was carried out to synthesise and characterise the chitosan-encapsulated genistein (CHI-En/Gen) and determine its anti-cancer and anti-angiogenic properties.Methods: The cytotoxic and anti-angiogenic activity of CHI-En/Gen was performed using MTT and chorioallantoic membrane assay. The molecular action was determined using flow cytometry and gene expression.Results: The synthesised CHI-En/Gen was in submicron size, spherical in shape and with entrapment efficiency and loading efficiency of 76.8% (w/w) and 32.6% (w/w), respectively. The CHI-En/Gen notably inhibited the growth and proliferation of human colorectal cancer cells (HT-29) while did not affect the viability of human dermal fibroblast as normal cell. The flow cytometry and the caspase-3 gene expression analyses revealed the apoptotic cells death in the HT-29 cells. Moreover, the encapsulated genistein showed anti-angiogenic activity.Conclusion: The CHI-En/Gen appeared as a promising carrier for the colon delivery of genistein to be used in complementary health approaches for the cancer prevention.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Anticarcinógenos/administración & dosificación , Anticarcinógenos/farmacología , Genisteína/administración & dosificación , Genisteína/farmacología , Inhibidores de la Angiogénesis/química , Animales , Anticarcinógenos/química , Caspasa 3/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Quitosano , Membrana Corioalantoides/efectos de los fármacos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genisteína/química , Células HT29 , Humanos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA