Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.356
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(8): 1990-2019, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811810

RESUMEN

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Asunto(s)
Envejecimiento , Senescencia Celular , Enfermedades Pulmonares , Pulmón , Inmunidad Adaptativa , Anciano , Envejecimiento/inmunología , Envejecimiento/patología , COVID-19/inmunología , COVID-19/patología , Humanos , Pulmón/inmunología , Pulmón/patología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Estrés Oxidativo
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32298651

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Asunto(s)
Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Animales , Femenino , Fibrosis/fisiopatología , Humanos , Inflamación/patología , Pulmón/metabolismo , Masculino , Metaplasia/fisiopatología , Ratones , Persona de Mediana Edad , Neutrófilos/inmunología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Análisis de la Célula Individual/métodos , Células Madre/metabolismo
3.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633902

RESUMEN

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Asunto(s)
Exosomas/fisiología , Neutrófilos/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Humanos , Inflamación , Integrinas , Elastasa de Leucocito/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , alfa 1-Antitripsina/metabolismo
4.
Immunity ; 56(3): 576-591.e10, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36822205

RESUMEN

Aberrant tissue-immune interactions are the hallmark of diverse chronic lung diseases. Here, we sought to define these interactions in emphysema, a progressive disease characterized by infectious exacerbations and loss of alveolar epithelium. Single-cell analysis of human emphysema lungs revealed the expansion of tissue-resident lymphocytes (TRLs). Murine studies identified a stromal niche for TRLs that expresses Hhip, a disease-variant gene downregulated in emphysema. Stromal-specific deletion of Hhip induced the topographic expansion of TRLs in the lung that was mediated by a hyperactive hedgehog-IL-7 axis. 3D immune-stem cell organoids and animal models of viral exacerbations demonstrated that expanded TRLs suppressed alveolar stem cell growth through interferon gamma (IFNγ). Finally, we uncovered an IFNγ-sensitive subset of human alveolar stem cells that was preferentially lost in emphysema. Thus, we delineate a stromal-lymphocyte-epithelial stem cell axis in the lung that is modified by a disease-variant gene and confers host susceptibility to emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Enfisema Pulmonar/genética , Pulmón , Linfocitos , Células Madre
5.
EMBO J ; 42(12): e111272, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37143403

RESUMEN

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Epigénesis Genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Perfilación de la Expresión Génica , Metilación de ADN
6.
Annu Rev Med ; 75: 247-262, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37827193

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.


Asunto(s)
Inflamación , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Medicina de Precisión , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética
7.
Am J Hum Genet ; 110(10): 1735-1749, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734371

RESUMEN

Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad Pulmonar Obstructiva Crónica , Receptores Acoplados a Proteínas G , Humanos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales/metabolismo , Estudio de Asociación del Genoma Completo , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores Acoplados a Proteínas G/genética
8.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39344710

RESUMEN

Epidemiologic and genetic studies in many complex diseases suggest subgroup disparities (e.g. by sex, race) in disease course and patient outcomes. We consider this from the standpoint of integrative analysis where we combine information from different views (e.g. genomics, proteomics, clinical data). Existing integrative analysis methods ignore the heterogeneity in subgroups, and stacking the views and accounting for subgroup heterogeneity does not model the association among the views. We propose Heterogeneity in Integration and Prediction (HIP), a statistical approach for joint association and prediction that leverages the strengths in each view to identify molecular signatures that are shared by and specific to a subgroup. We apply HIP to proteomics and gene expression data pertaining to chronic obstructive pulmonary disease (COPD) to identify proteins and genes shared by, and unique to, males and females, contributing to the variation in COPD, measured by airway wall thickness. Our COPD findings have identified proteins, genes, and pathways that are common across and specific to males and females, some implicated in COPD, while others could lead to new insights into sex differences in COPD mechanisms. HIP accounts for subgroup heterogeneity in multi-view data, ranks variables based on importance, is applicable to univariate or multivariate continuous outcomes, and incorporates covariate adjustment. With the efficient algorithms implemented using PyTorch, this method has many potential scientific applications and could enhance multiomics research in health disparities. HIP is available at https://github.com/lasandrall/HIP, a video tutorial at https://youtu.be/O6E2OLmeMDo and a Shiny Application at https://multi-viewlearn.shinyapps.io/HIP_ShinyApp/ for users with limited programming experience.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Masculino , Femenino , Proteómica/métodos , Algoritmos , Genómica/métodos , Biología Computacional/métodos
9.
Annu Rev Physiol ; 84: 631-654, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724435

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous, smoking-related disease of significant global impact. The complex biology of COPD is ultimately driven by a few interrelated processes, including proteolytic tissue remodeling, innate immune inflammation, derangements of the host-pathogen response, aberrant cellular phenotype switching, and cellular senescence, among others. Each of these processes are engendered and perpetuated by cells modulating their environment or each other. Extracellular vesicles (EVs) are powerful effectors that allow cells to perform a diverse array of functions on both adjacent and distant tissues, and their pleiotropic nature is only beginning to be appreciated. As such, EVs are candidates to play major roles in these fundamental mechanisms of disease behind COPD. Furthermore, some such roles for EVs are already established, and EVs are implicated in significant aspects of COPD pathogenesis. Here, we discuss known and potential ways that EVs modulate the environment of their originating cells to contribute to the processes that underlie COPD.


Asunto(s)
Exosomas , Vesículas Extracelulares , Enfermedad Pulmonar Obstructiva Crónica , Senescencia Celular , Humanos , Inflamación
10.
Genet Epidemiol ; 48(6): 270-288, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644517

RESUMEN

The genome-wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type-I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective-risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption-free model built upon data-consistent inversion (DCI), which is a recently developed measure-theoretic framework utilized for uncertainty quantification. This proposed DCI-derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI-derived model to cover all genetic variants without emphasizing on additivity of the classic-GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type-I error rate at least as well as the classic-GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Simulación por Computador , Polimorfismo de Nucleótido Simple , Fenotipo , Modelos Estadísticos , Genotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Variación Genética
11.
Stem Cells ; 42(4): 346-359, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38279981

RESUMEN

BACKGROUND: The use of human umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in improving the pathophysiological characteristics of rats with chronic obstructive pulmonary disease (COPD). However, more research is needed to understand the exact mechanism behind their therapeutic effects and their impact on lung microbiota. METHODS: To investigate this, rats were randomly assigned to one of 3 groups: Control, COPD + vehicle, and COPD + UC-MSCs group. Lung function changes after UC-MSCs therapy were evaluated weekly for 6 weeks. Additionally, lactate dehydrogenase (LDH), TNF (tumor necrosis factor)-α, IL (interleukin)-6, and IL-1ß level in bronchoalveolar lavage fluid (BALF) were analyzed. Arterial blood gas and weight were recorded. Hematoxylin and eosin (HE) staining was used to examine lung pathology, while changes in the lung microbiota were evaluated through 16S rRNA sequencing. RESULTS: The administration of UC-MSCs in rats led to a progressive amelioration of COPD, as demonstrated by enhanced lung function and reduced inflammatory response. UC-MSCs treatment significantly altered the structure and diversity of the lung microbiota, effectively preventing microbiota dysbiosis. This was achieved by increasing the abundance of Bacteroidetes and reducing the levels of Proteobacteria. Additionally, treatment with UC-MSCs reduced the activation of pathways associated with COPD, including microbial metabolism, ABC transporters, and Quorum sensing. The group of UC-MSCs showed increased metabolic pathways, such as amino acid biosynthesis, purine metabolism, starch and sucrose metabolism, and biosynthesis of secondary metabolites, compared to the COPD group. CONCLUSIONS: The use of UC-MSCs was found to reduce inflammation and improve lung function in rats with COPD. The mechanism may be related to the lung microbiota, as UC-MSCs improved the communities of lung microbiota and regulated dysregulated metabolic pathways.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Humanos , Animales , ARN Ribosómico 16S , Ratas Sprague-Dawley , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/patología , Factor de Necrosis Tumoral alfa , Interleucina-6 , Cordón Umbilical
12.
Stem Cells ; 42(3): 230-250, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38183264

RESUMEN

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , SARS-CoV-2 , Proteómica , Inmunoterapia , Inflamación
13.
Am J Respir Crit Care Med ; 209(12): 1431-1440, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236192

RESUMEN

Rationale: The term "pre-chronic obstructive pulmonary disease" ("pre-COPD") refers to individuals at high risk of developing COPD who do not meet conventional spirometric criteria for airflow obstruction. New approaches to identifying these individuals are needed, particularly in younger populations. Objectives: To determine whether lung function thresholds and respiratory symptoms can be used to identify individuals at risk of developing COPD. Methods: The Tasmanian Longitudinal Health Study comprises a population-based cohort first studied in 1968 (at age 7 yr). Respiratory symptoms, pre- and post-bronchodilator (BD) spirometry, diffusing capacity, and static lung volumes were measured in a subgroup at age 45, and the incidence of COPD was assessed at age 53. For each lung function measure, z-scores were calculated using Global Lung Function Initiative references. The optimal threshold for best discrimination of COPD incidence was determined by the unweighted Youden index. Measurements and Main Results: Among 801 participants who did not have COPD at age 45, the optimal threshold for COPD incidence by age 53 was pre-BD FEV1/FVC z-score less than -1.264, corresponding to the lowest 10th percentile. Those below this threshold had a 36-fold increased risk of developing COPD over an 8-year follow-up period (risk ratio, 35.8; 95% confidence interval, 8.88 to 144), corresponding to a risk difference of 16.4% (95% confidence interval, 3.7 to 67.4). The sensitivity was 88%, and the specificity was 87%. Positive and negative likelihood ratios were 6.79 and 0.14, respectively. Respiratory symptoms, post-BD spirometry, diffusing capacity, and static lung volumes did not improve on the classification achieved by pre-BD FEV1/FVC alone. Conclusions: This is the first study, to our knowledge, to evaluate the discriminatory accuracy of spirometry, diffusing capacity, and static lung volume thresholds for COPD incidence in middle-aged adults. Our findings support the inclusion of pre-BD spirometry in the physiological definition of pre-COPD and indicate that pre-BD FEV1/FVC at the 10th percentile accurately identifies individuals at high risk of developing COPD in community-based settings.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Espirometría/métodos , Tasmania/epidemiología , Incidencia , Estudios Longitudinales , Estudios de Cohortes , Pruebas de Función Respiratoria/métodos , Volumen Espiratorio Forzado , Capacidad Vital , Adulto
14.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38055196

RESUMEN

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Asunto(s)
Asma , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Pulmón , Asma/patología , Microtomografía por Rayos X
15.
Artículo en Inglés | MEDLINE | ID: mdl-38843116

RESUMEN

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

16.
Am J Respir Crit Care Med ; 210(1): 119-127, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271696

RESUMEN

Rationale: COPD and bronchiectasis are commonly reported together. Studies report varying impacts of co-diagnosis on outcomes, which may be related to different definitions of disease used across studies. Objectives: To investigate the prevalence of chronic obstructive pulmonary disease (COPD) associated with bronchiectasis and its relationship with clinical outcomes. We further investigated the impact of implementing the standardized ROSE criteria (radiological bronchiectasis [R], obstruction [FEV1/FVC ratio <0.7; O], symptoms [S], and exposure [⩾10 pack-years of smoking; E]), an objective definition of the association of bronchiectasis with COPD. Methods: Analysis of the EMBARC (European Bronchiectasis Registry), a prospective observational study of patients with computed tomography-confirmed bronchiectasis from 28 countries. The ROSE criteria were used to objectively define the association of bronchiectasis with COPD. Key outcomes during a maximum of 5 years of follow-up were exacerbations, hospitalization, and mortality. Measurements and Main Results: A total of 16,730 patients with bronchiectasis were included; 4,336 had a clinician-assigned codiagnosis of COPD, and these patients had more exacerbations, worse quality of life, and higher severity scores. We observed marked overdiagnosis of COPD: 22.2% of patients with a diagnosis of COPD did not have airflow obstruction and 31.9% did not have a history of ⩾10 pack-years of smoking. Therefore, 2,157 patients (55.4%) met the ROSE criteria for COPD. Compared with patients without COPD, patients who met the ROSE criteria had increased risks of exacerbations and exacerbations resulting in hospitalization during follow-up (incidence rate ratio, 1.25; 95% confidence interval, 1.15-1.35; vs. incidence rate ratio, 1.69; 95% confidence interval, 1.51-1.90, respectively). Conclusions: The label of COPD is often applied to patients with bronchiectasis who do not have objective evidence of airflow obstruction or a smoking history. Patients with a clinical label of COPD have worse clinical outcomes.


Asunto(s)
Bronquiectasia , Enfermedad Pulmonar Obstructiva Crónica , Sistema de Registros , Humanos , Bronquiectasia/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Masculino , Femenino , Anciano , Persona de Mediana Edad , Europa (Continente)/epidemiología , Estudios Prospectivos , Prevalencia , Índice de Severidad de la Enfermedad , Fumar/epidemiología , Fumar/efectos adversos , Progresión de la Enfermedad , Comorbilidad
17.
Am J Respir Crit Care Med ; 209(5): 529-542, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261630

RESUMEN

Rationale: It is unclear whether extracorporeal CO2 removal (ECCO2R) can reduce the rate of intubation or the total time on invasive mechanical ventilation (IMV) in adults experiencing an exacerbation of chronic obstructive pulmonary disease (COPD). Objectives: To determine whether ECCO2R increases the number of ventilator-free days within the first 5 days postrandomization (VFD-5) in exacerbation of COPD in patients who are either failing noninvasive ventilation (NIV) or who are failing to wean from IMV. Methods: This randomized clinical trial was conducted in 41 U.S. institutions (2018-2022) (ClinicalTrials.gov ID: NCT03255057). Subjects were randomized to receive either standard care with venovenous ECCO2R (NIV stratum: n = 26; IMV stratum: n = 32) or standard care alone (NIV stratum: n = 22; IMV stratum: n = 33). Measurements and Main Results: The trial was stopped early because of slow enrollment and enrolled 113 subjects of the planned sample size of 180. There was no significant difference in the median VFD-5 between the arms controlled by strata (P = 0.36). In the NIV stratum, the median VFD-5 for both arms was 5 days (median shift = 0.0; 95% confidence interval [CI]: 0.0-0.0). In the IMV stratum, the median VFD-5 in the standard care and ECCO2R arms were 0.25 and 2 days, respectively; median shift = 0.00 (95% confidence interval: 0.00-1.25). In the NIV stratum, all-cause in-hospital mortality was significantly higher in the ECCO2R arm (22% vs. 0%, P = 0.02) with no difference in the IMV stratum (17% vs. 15%, P = 0.73). Conclusions: In subjects with exacerbation of COPD, the use of ECCO2R compared with standard care did not improve VFD-5. Clinical trial registered with www.clinicaltrials.gov (NCT03255057).


Asunto(s)
Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Dióxido de Carbono , Respiración , Enfermedad Pulmonar Obstructiva Crónica/terapia , Circulación Extracorporea
18.
Am J Respir Crit Care Med ; 210(6): 766-778, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422471

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. Objectives: To systematically review the evidence form epigenome-wide association studies related to COPD and lung function. Methods: A systematic literature search performed on PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases identified 1,947 articles that investigated epigenetic changes associated with COPD and/or lung function; 17 of them met our eligibility criteria, from which data were manually extracted. Differentially methylated positions (DMPs) and/or annotated genes were considered replicated if identified by two or more studies with a P < 1 × 10-4. Measurements and Main Results: Ten studies profiled DNA methylation changes in blood and seven in respiratory samples, including surgically resected lung tissue (n = 3), small airway epithelial brushings (n = 2), BAL (n = 1), and sputum (n = 1). Main results showed: 1) high variability in study design, covariates, and effect sizes, which prevented a formal meta-analysis; 2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; 3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and 4) in COPD versus control studies, 123 genes (2.6% of total) were shared between one or more blood and one or more respiratory samples and associated with chronic inflammation, ion transport, and coagulation. Conclusions: There is high heterogeneity across published COPD and/or lung function epigenome-wide association studies. A few genes (n = 123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research. Systematic Review [protocol] registered with Open Science Framework (OSF).


Asunto(s)
Metilación de ADN , Epigenoma , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Humanos , Metilación de ADN/genética , Epigenoma/genética , Epigénesis Genética , Femenino , Masculino , Pulmón/fisiopatología , Pruebas de Función Respiratoria , Persona de Mediana Edad , Interacción Gen-Ambiente , Anciano
19.
Artículo en Inglés | MEDLINE | ID: mdl-38477675

RESUMEN

RATIONALE: Regular, low-dose, sustained-release morphine is frequently prescribed for persistent breathlessness in chronic obstructive pulmonary disease (COPD). However, effects on daytime sleepiness, perceived sleep quality and daytime function have not been rigorously investigated. OBJECTIVES: Determine the effects of regular, low-dose, sustained-release morphine on sleep parameters in COPD. METHODS: Pre-specified secondary analyses of validated sleep questionnaire data from a randomized trial of daily, low-dose, sustained -release morphine versus placebo over four weeks commencing at 8mg or 16mg/day with blinded up-titration over two weeks to a maximum of 32mg/day. Primary outcomes for these analyses were week-1 Epworth Sleepiness Scale (ESS) and Karolinska Sleepiness Scale (KSS) responses on morphine versus placebo. Secondary outcomes included Leeds Sleep Evaluation Questionnaire (LSEQ) scores (end of weeks 1 and 4), KSS and ESS beyond week-1 and associations between breathlessness, morphine, and questionnaire scores. MEASUREMENTS AND MAIN RESULTS: 156 people were randomized. Week-1 sleepiness scores were not different on morphine versus placebo (∆ESS [95%CI] versus placebo: 8mg group: -0.59 [-1.99, 0.81], p=0.41; 16mg group: -0.72 [-2.33, 0.9], p=0.38; ∆KSS versus placebo: 8mg group: 0.11 [-0.7, 0.9], p=0.78; 16mg group: -0.41 [-1.31, 0.49], p=0.37). This neutral effect persisted at later timepoints. In addition, participants who reported reduced breathlessness with morphine at 4 weeks also had improvement in LSEQ domain scores including perceived sleep quality and daytime function. CONCLUSIONS: Regular, low-dose morphine does not worsen sleepiness when used for breathlessness in COPD. Individual improvements in breathlessness with morphine may be related to improvements in sleep.

20.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931077

RESUMEN

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Humanos , Ratones , Epitelio/metabolismo , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA