Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.497
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38157855

RESUMEN

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Asunto(s)
Proteinosis Alveolar Pulmonar , Receptores CCR2 , Niño , Humanos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiencia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfección/metabolismo
2.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995514

RESUMEN

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Asunto(s)
Aminopiridinas/metabolismo , Benzodioxoles/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Indoles/metabolismo , Pliegue de Proteína , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Animales , Benzodioxoles/química , Benzodioxoles/uso terapéutico , Sitios de Unión , Células CHO , Membrana Celular/química , Membrana Celular/metabolismo , Cricetulus , Microscopía por Crioelectrón , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/química , Indoles/uso terapéutico , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/uso terapéutico , Mutación , Dominios Proteicos/genética , Células Sf9 , Transfección
3.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35568033

RESUMEN

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Masculino , Infecciones por Mycobacterium no Tuberculosas/terapia , Mycobacterium abscessus/fisiología
4.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30799037

RESUMEN

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Asunto(s)
Candida albicans/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Candida albicans/patogenicidad , Reacciones Cruzadas/inmunología , Fibrosis Quística/inmunología , Fibrosis Quística/microbiología , Humanos , Inmunidad , Inmunidad Heteróloga/inmunología , Células Th17/fisiología
5.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307490

RESUMEN

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Asunto(s)
Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Evolución Molecular , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Fibrosis Quística/complicaciones , Proteínas de Unión al ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Selección Genética , Factores de Transcripción/genética
6.
Am J Hum Genet ; 111(10): 2203-2218, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39260370

RESUMEN

To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, ß = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, ß = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Índice de Masa Corporal , Fibrosis Quística , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Fibrosis Quística/genética , Masculino , Femenino , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Adulto , Proteína ADAMTS5/genética , Niño , Adolescente , Frecuencia de los Genes , Haplotipos , Predisposición Genética a la Enfermedad , Adulto Joven , Obesidad/genética , Genes Modificadores
7.
Proc Natl Acad Sci U S A ; 121(8): e2315190121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38363865

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion transporter required for epithelial homeostasis in the lung and other organs, with CFTR mutations leading to the autosomal recessive genetic disease CF. Apart from excessive mucus accumulation and dysregulated inflammation in the airways, people with CF (pwCF) exhibit defective innate immune responses and are susceptible to bacterial respiratory pathogens such as Pseudomonas aeruginosa. Here, we investigated the role of CFTR in macrophage antimicrobial responses, including the zinc toxicity response that is used by these innate immune cells against intracellular bacteria. Using both pharmacological approaches, as well as cells derived from pwCF, we show that CFTR is required for uptake and clearance of pathogenic Escherichia coli by CSF-1-derived primary human macrophages. CFTR was also required for E. coli-induced zinc accumulation and zinc vesicle formation in these cells, and E. coli residing in macrophages exhibited reduced zinc stress in the absence of CFTR function. Accordingly, CFTR was essential for reducing the intramacrophage survival of a zinc-sensitive E. coli mutant compared to wild-type E. coli. Ectopic expression of the zinc transporter SLC30A1 or treatment with exogenous zinc was sufficient to restore antimicrobial responses against E. coli in human macrophages. Zinc supplementation also restored bacterial killing in GM-CSF-derived primary human macrophages responding to P. aeruginosa, used as an in vitro macrophage model relevant to CF. Thus, restoration of the zinc toxicity response could be pursued as a therapeutic strategy to restore innate immune function and effective host defense in pwCF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Macrófagos , Humanos , Antibacterianos/uso terapéutico , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Zinc/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(32): e2304382121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088389

RESUMEN

Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.


Asunto(s)
Aspergillus fumigatus , Gliotoxina , Pseudomonas aeruginosa , Gliotoxina/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Zinc/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Interacciones Microbianas , Humanos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
9.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241440

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Proliferación Celular , Enfermedades Renales Poliquísticas/metabolismo , Apoptosis , Estrés Oxidativo , Quistes/metabolismo , ADN/metabolismo , Riñón/metabolismo , Canales Catiónicos TRPP/genética
10.
Proc Natl Acad Sci U S A ; 121(5): e2313089121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252817

RESUMEN

In cystic fibrosis (CF), impaired mucociliary clearance leads to chronic infection and inflammation. However, cilia beating features in a CF altered environment, consisting of dehydrated airway surface liquid layer and abnormal mucus, have not been fully characterized. Furthermore, acute inflammation is normally followed by an active resolution phase requiring specialized proresolving lipid mediators (SPMs) and allowing return to homeostasis. However, altered SPMs biosynthesis has been reported in CF. Here, we explored cilia beating dynamics in CF airways primary cultures and its response to the SPMs, resolvin E1 (RvE1) and lipoxin B4 (LXB4). Human nasal epithelial cells (hNECs) from CF and non-CF donors were grown at air-liquid interface. The ciliary beat frequency, synchronization, orientation, and density were analyzed from high-speed video microscopy using a multiscale Differential Dynamic Microscopy algorithm and an in-house developed method. Mucins and ASL layer height were studied by qRT-PCR and confocal microscopy. Principal component analysis showed that CF and non-CF hNEC had distinct cilia beating phenotypes, which was mostly explained by differences in cilia beat organization rather than frequency. Exposure to RvE1 (10 nM) and to LXB4 (10 nM) restored a non-CF-like cilia beating phenotype. Furthermore, RvE1 increased the airway surface liquid (ASL) layer height and reduced the mucin MUC5AC thickness. The calcium-activated chloride channel, TMEM16A, was involved in the RvE1 effect on cilia beating, hydration, and mucus. Altogether, our results provide evidence for defective cilia beating in CF airway epithelium and a role of RvE1 and LXB4 to restore the main epithelial functions involved in the mucociliary clearance.


Asunto(s)
Fibrosis Quística , Ácido Eicosapentaenoico/análogos & derivados , Humanos , Cilios , Mucosa Nasal , Inflamación
11.
Proc Natl Acad Sci U S A ; 121(33): e2406234121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102545

RESUMEN

Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host. Understanding bacterial physiology is vital because it dictates host response and bacterial interactions with antimicrobials. Thus, our goal was to develop an animal model that accurately recapitulates bacterial physiology in human infection. The system we chose to model was a chronic Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF). To accomplish this goal, we leveraged a framework that we recently developed to evaluate model accuracy by calculating the percentage of bacterial genes that are expressed similarly in a model to how they are expressed in their infection environment. We combined two complementary models of P. aeruginosa infection-an in vitro synthetic CF sputum model (SCFM2) and a mouse acute pneumonia model. This combined model captured the chronic physiology of P. aeruginosa in CF better than the standard mouse infection model, showing the power of a data-driven approach to refining animal models. In addition, the results of this work challenge the assumption that a chronic infection model requires long-term colonization.


Asunto(s)
Fibrosis Quística , Modelos Animales de Enfermedad , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Animales , Infecciones por Pseudomonas/microbiología , Ratones , Humanos , Infecciones del Sistema Respiratorio/microbiología , Interacciones Huésped-Patógeno , Esputo/microbiología
12.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37982452

RESUMEN

Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.


Asunto(s)
Riñón , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Riñón/metabolismo , Nefronas/metabolismo , Centrosoma/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Ratones Noqueados , Fibrosis , Proteínas de Ciclo Celular/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(47): e2312995120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956290

RESUMEN

A model for antibiotic accumulation in bacterial biofilm microcolonies utilizing heterogenous porosity and attachment site profiles replicated the periphery sequestration reported in prior experimental studies on Pseudomonas aeruginosa PAO1 biofilm cell clusters. These P. aeruginosa cell clusters are in vitro models of the chronic P. aeruginosa infections in cystic fibrosis patients which display recalcitrance to antibiotic treatments, leading to exacerbated morbidity and mortality. This resistance has been partially attributed to periphery sequestration, where antibiotics fail to penetrate biofilm cell clusters. The physical phenomena driving this periphery sequestration have not been definitively established. This paper introduces mathematical models to account for two proposed physical phenomena driving periphery sequestration: biofilm matrix attachment and volume-exclusion due to variable biofilm porosity. An antibiotic accumulation model which incorporated these phenomena better fit observed periphery sequestration data compared to previous models.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
14.
Proc Natl Acad Sci U S A ; 120(47): e2307551120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967223

RESUMEN

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Nasal/metabolismo , Concentración de Iones de Hidrógeno , Mutación , Mucosa Respiratoria/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(19): e2221542120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126703

RESUMEN

Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.


Asunto(s)
Infecciones Bacterianas , Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Ecosistema , Infecciones por Pseudomonas/microbiología , Transcriptoma , Células Epiteliales/microbiología , Medios de Cultivo/metabolismo , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/genética , Esputo/microbiología
16.
Clin Microbiol Rev ; 37(3): e0021521, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39158301

RESUMEN

SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.


Asunto(s)
Fibrosis Quística , Infecciones del Sistema Respiratorio , Manejo de Especímenes , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Bacterias/aislamiento & purificación , Bacterias/clasificación , Sistema Respiratorio/microbiología , Hongos/aislamiento & purificación , Hongos/clasificación
17.
Physiology (Bethesda) ; 39(4): 0, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501963

RESUMEN

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Pulmón , Humanos , Fibrosis Quística/fisiopatología , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Pulmón/metabolismo , Pulmón/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Mutación , Circulación Pulmonar/fisiología
18.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366124

RESUMEN

Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.


Asunto(s)
Fibrosis Quística , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Fibrosis Quística/complicaciones , Pulmón/microbiología , Genómica , Mutación
19.
Annu Rev Med ; 74: 413-426, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35973718

RESUMEN

Cystic fibrosis (CF) is an inherited multisystemic disease that can cause progressive bronchiectasis, pancreatic endocrine and exocrine insufficiency, distal intestinal obstruction syndrome, liver dysfunction, and other disorders. Traditional therapies focused on the treatment or prevention of damage to each organ system with incremental modalities such as nebulized medications for the lungs, insulin for diabetes, and supplementation with pancreatic enzymes. However, the advent of highly effective modulator therapies that target specific cystic fibrosis transmembrane conductance regulator protein malformations resulting from individual genetic mutations has transformed the lives and prognosis for persons with CF.


Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Pronóstico , Mutación , Aminofenoles/uso terapéutico
20.
Am J Hum Genet ; 109(10): 1894-1908, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206743

RESUMEN

Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.


Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Enfermedades del Recién Nacido , Obstrucción Intestinal , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diabetes Mellitus/genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Obstrucción Intestinal/complicaciones , Obstrucción Intestinal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA