Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.590
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848676

RESUMEN

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Asunto(s)
Modelos Biológicos , Neoplasias , Animales , Humanos , Carcinogénesis/patología , Carcinogénesis/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética , Células Madre Neoplásicas/patología
2.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428422

RESUMEN

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Asunto(s)
Inflamación , Interleucina-10 , Mielopoyesis , Animales , Ratones , Embarazo/inmunología , Feto , Hematopoyesis , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Interleucina-10/inmunología , Animales Recién Nacidos , Femenino
3.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38631355

RESUMEN

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Asunto(s)
Factores de Transcripción , Animales , Humanos , Ratones , Regulación de la Expresión Génica , Mutación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular
4.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949057

RESUMEN

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Asunto(s)
Proteostasis , Pez Cebra , Animales , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Temperatura , Pez Cebra/crecimiento & desarrollo
5.
Cell ; 186(3): 513-527.e19, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657441

RESUMEN

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.


Asunto(s)
Desarrollo Embrionario , Mesodermo , Somitos , Animales , Humanos , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mesodermo/fisiología , Morfogénesis , Vía de Señalización Wnt , Organoides/metabolismo
6.
Cell ; 186(21): 4676-4693.e29, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37729907

RESUMEN

The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.


Asunto(s)
Evolución Biológica , Invertebrados , Neuronas , Animales , Ctenóforos/genética , Expresión Génica , Neuronas/fisiología , Filogenia , Análisis de la Célula Individual , Invertebrados/citología , Invertebrados/genética , Invertebrados/metabolismo , Comunicación Paracrina
7.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703875

RESUMEN

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Asunto(s)
Macrófagos , Humanos , Diferenciación Celular , Linaje de la Célula , Macrófagos/citología , Microglía , Especificidad de Órganos
8.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35512705

RESUMEN

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Asunto(s)
Organogénesis , Transcriptoma , Animales , ADN/genética , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica/métodos , Mamíferos/genética , Ratones , Organogénesis/genética , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
9.
Cell ; 185(17): 3169-3185.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35908548

RESUMEN

Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.


Asunto(s)
Gastrulación , Mesodermo , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Nucleares/metabolismo , Transducción de Señal
10.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35917817

RESUMEN

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Haploinsuficiencia/genética , Humanos
11.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738284

RESUMEN

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Asunto(s)
Virus Hendra , Virus Nipah , Células Madre Pluripotentes , Arterias , Células Endoteliales , Virus Hendra/genética , Humanos , Tropismo
12.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858625

RESUMEN

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Asunto(s)
Rotura Cromosómica , Segregación Cromosómica , Aneuploidia , Animales , ADN , Replicación del ADN , Desarrollo Embrionario/genética , Humanos , Mamíferos/genética
13.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179666

RESUMEN

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Asunto(s)
Cromatina , Placenta , Animales , Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Cell ; 184(11): 2825-2842.e22, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33932341

RESUMEN

Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.


Asunto(s)
Desarrollo Embrionario/fisiología , Gastrulación/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Ratones/embriología , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
15.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406409

RESUMEN

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Asunto(s)
Intestinos/citología , Intestinos/crecimiento & desarrollo , Análisis de la Célula Individual , Células Endoteliales/citología , Sistema Nervioso Entérico/citología , Feto/embriología , Fibroblastos/citología , Humanos , Inmunidad , Enfermedades Intestinales/congénito , Enfermedades Intestinales/patología , Mucosa Intestinal/crecimiento & desarrollo , Intestinos/irrigación sanguínea , Ligandos , Mesodermo/citología , Neovascularización Fisiológica , Pericitos/citología , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/metabolismo
16.
Cell ; 184(3): 741-758.e17, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484631

RESUMEN

Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Genoma , Sensación/genética , Transcripción Genética , Alelos , Animales , Animales Recién Nacidos , Linaje de la Célula/genética , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Sitios Genéticos , Impresión Genómica , Ratones , Familia de Multigenes , Neuroglía/metabolismo , Neuronas/metabolismo , Transcriptoma/genética , Corteza Visual/metabolismo
17.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536345

RESUMEN

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/parasitología , Interacciones Huésped-Parásitos/fisiología , Parásitos/fisiología , Proteolisis , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ingeniería Genética , Humanos , Insectos/fisiología , Modelos Biológicos , Fenotipo , Fotoperiodo , Filogenia , Phytoplasma/fisiología , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Reproducción , Nicotiana , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Annu Rev Cell Dev Biol ; 38: 349-374, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35562853

RESUMEN

Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.


Asunto(s)
Citoesqueleto de Actina , Actomiosina , Adhesión Celular
19.
Cell ; 180(5): 847-861.e15, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142678

RESUMEN

Early life environmental exposure, particularly during perinatal period, can have a life-long impact on organismal development and physiology. The biological rationale for this phenomenon is to promote physiological adaptations to the anticipated environment based on early life experience. However, perinatal exposure to adverse environments can also be associated with adult-onset disorders. Multiple environmental stressors induce glucocorticoids, which prompted us to investigate their role in developmental programming. Here, we report that perinatal glucocorticoid exposure had long-term consequences and resulted in diminished CD8 T cell response in adulthood and impaired control of tumor growth and bacterial infection. We found that perinatal glucocorticoid exposure resulted in persistent alteration of the hypothalamic-pituitary-adrenal (HPA) axis. Consequently, the level of the hormone in adults was significantly reduced, resulting in decreased CD8 T cell function. Our study thus demonstrates that perinatal stress can have long-term consequences on CD8 T cell immunity by altering HPA axis activity.


Asunto(s)
Infecciones Bacterianas/inmunología , Desarrollo Embrionario/inmunología , Glucocorticoides/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Desarrollo Embrionario/genética , Femenino , Glucocorticoides/inmunología , Glucocorticoides/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Interleucina-4/farmacología , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Neoplasias/inducido químicamente , Neoplasias/genética , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Receptores de Glucocorticoides/genética , Transducción de Señal/genética
20.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31955847

RESUMEN

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Asunto(s)
Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Proteómica/métodos , Animales , Axones/metabolismo , Encéfalo/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Neurogénesis/fisiología , Nervio Olfatorio/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Receptores de Lipoproteína/metabolismo , Olfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA