Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2313542121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412121

RESUMEN

Studying the pathways of ligand-receptor binding is essential to understand the mechanism of target recognition by small molecules. The binding free energy and kinetics of protein-ligand complexes can be computed using molecular dynamics (MD) simulations, often in quantitative agreement with experiments. However, only a qualitative picture of the ligand binding/unbinding paths can be obtained through a conventional analysis of the MD trajectories. Besides, the higher degree of manual effort involved in analyzing pathways limits its applicability in large-scale drug discovery. Here, we address this limitation by introducing an automated approach for analyzing molecular transition paths with a particular focus on protein-ligand dissociation. Our method is based on the dynamic time-warping algorithm, originally designed for speech recognition. We accurately classified molecular trajectories using a very generic descriptor set of contacts or distances. Our approach outperforms manual classification by distinguishing between parallel dissociation channels, within the pathways identified by visual inspection. Most notably, we could compute exit-path-specific ligand-dissociation kinetics. The unbinding timescale along the fastest path agrees with the experimental residence time, providing a physical interpretation to our entirely data-driven protocol. In combination with appropriate enhanced sampling algorithms, this technique can be used for the initial exploration of ligand-dissociation pathways as well as for calculating path-specific thermodynamic and kinetic properties.

2.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38342688

RESUMEN

A conspicuous property of brain development or maturity is coupled with coordinated or synchronized brain structural co-variation. However, there is still a lack of effective approach to map individual structural covariance network. Here, we developed a novel individual structural covariance network method using dynamic time warping algorithm and applied it to delineate developmental trajectories of topological organizations of structural covariance network from childhood to early adulthood with a large sample of 655 individuals from Human Connectome Project-Development dataset. We found that the individual structural covariance network exhibited small-worldness property and the network global topological characteristics including small-worldness, global efficiency, local efficiency, and modularity linearly increase with age while the shortest path length linearly decreases with age. The nodal topological properties including betweenness and degree increased with age in language and emotion regulation related brain areas, while it decreased with age mainly in visual cortex, sensorimotor area, and hippocampus. Moreover, the topological attributes of structural covariance network as features could predict the age of each individual. Taken together, our results demonstrate that dynamic time warping can effectively map individual structural covariance network to uncover the developmental trajectories of network topology, which may facilitate future investigations to establish the links of structural co-variations with respect to cognition and disease vulnerability.


Asunto(s)
Conectoma , Corteza Sensoriomotora , Humanos , Adulto , Niño , Imagen por Resonancia Magnética , Encéfalo/fisiología , Cognición , Hipocampo , Conectoma/métodos
3.
Proteins ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219099

RESUMEN

A fundamental problem in the field of protein evolutionary biology is determining the degree and nature of evolutionary relatedness among homologous proteins that have diverged to a point where they share less than 30% amino acid identity yet retain similar structures and/or functions. Such proteins are said to lie within the "Twilight Zone" of amino acid identity. Many researchers have leveraged experimentally determined structures in the quest to classify proteins in the Twilight Zone. Such endeavors can be highly time consuming and prohibitively expensive for large-scale analyses. Motivated by this problem, here we use molecular weight-hydrophobicity physicochemical dynamic time warping (MWHP DTW) to quantify similarity of simulated and real-world homologous protein domains. MWHP DTW is a physicochemical method requiring only the amino acid sequence to quantify similarity of related proteins and is particularly useful in determining similarity within the Twilight Zone due to its resilience to primary sequence substitution saturation. This is a step forward in determination of the relatedness among Twilight Zone proteins and most notably allows for the discrimination of random similarity and true homology in the 0%-20% identity range. This method was previously presented expeditiously just after the outbreak of COVID-19 because it was able to functionally cluster ACE2-binding betacoronavirus receptor binding domains (RBDs), a task that has been elusive using standard techniques. Here we show that one reason that MWHP DTW is an effective technique for comparisons within the Twilight Zone is because it can uncover hidden homology by exploiting physicochemical conservation, a problem that protein sequence alignment algorithms are inherently incapable of addressing within the Twilight Zone. Further, we present an extended definition of the Twilight Zone that incorporates the dynamic relationship between structural, physicochemical, and sequence-based metrics.

4.
BMC Infect Dis ; 24(1): 635, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918718

RESUMEN

BACKGROUND: Annual epidemics of respiratory syncytial virus (RSV) had consistent timing and intensity between seasons prior to the SARS-CoV-2 pandemic (COVID-19). However, starting in April 2020, RSV seasonal activity declined due to COVID-19 non-pharmaceutical interventions (NPIs) before re-emerging after relaxation of NPIs. We described the unusual patterns of RSV epidemics that occurred in multiple subsequent waves following COVID-19 in different countries and explored factors associated with these patterns. METHODS: Weekly cases of RSV from twenty-eight countries were obtained from the World Health Organisation and combined with data on country-level characteristics and the stringency of the COVID-19 response. Dynamic time warping and regression were used to cluster time series patterns and describe epidemic characteristics before and after COVID-19 pandemic, and identify related factors. RESULTS: While the first wave of RSV epidemics following pandemic suppression exhibited unusual patterns, the second and third waves more closely resembled typical RSV patterns in many countries. Post-pandemic RSV patterns differed in their intensity and/or timing, with several broad patterns across the countries. The onset and peak timings of the first and second waves of RSV epidemics following COVID-19 suppression were earlier in the Southern than Northern Hemisphere. The second wave of RSV epidemics was also earlier with higher population density, and delayed if the intensity of the first wave was higher. More stringent NPIs were associated with lower RSV growth rate and intensity and a shorter gap between the first and second waves. CONCLUSION: Patterns of RSV activity have largely returned to normal following successive waves in the post-pandemic era. Onset and peak timings of future epidemics following disruption of normal RSV dynamics need close monitoring to inform the delivery of preventive and control measures.


Asunto(s)
COVID-19 , Salud Global , Infecciones por Virus Sincitial Respiratorio , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estaciones del Año , Virus Sincitial Respiratorio Humano , Pandemias
5.
Respirology ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134468

RESUMEN

BACKGROUND AND OBJECTIVE: Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses. METHODS: This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA). RESULTS: The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV). CONCLUSION: This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.

6.
Neurocrit Care ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043984

RESUMEN

BACKGROUND: Identical bursts on electroencephalography (EEG) are considered a specific predictor of poor outcomes in cardiac arrest, but its relationship with structural brain injury severity on magnetic resonance imaging (MRI) is not known. METHODS: This was a retrospective analysis of clinical, EEG, and MRI data from adult comatose patients after cardiac arrest. Burst similarity in first 72 h from the time of return of spontaneous circulation were calculated using dynamic time-warping (DTW) for bursts of equal (i.e., 500 ms) and varying (i.e., 100-500 ms) lengths and cross-correlation for bursts of equal lengths. Structural brain injury severity was measured using whole brain mean apparent diffusion coefficient (ADC) on MRI. Pearson's correlation coefficients were calculated between mean burst similarity across consecutive 12-24-h time blocks and mean whole brain ADC values. Good outcome was defined as Cerebral Performance Category of 1-2 (i.e., independence for activities of daily living) at the time of hospital discharge. RESULTS: Of 113 patients with cardiac arrest, 45 patients had burst suppression (mean cardiac arrest to MRI time 4.3 days). Three study participants with burst suppression had a good outcome. Burst similarity calculated using DTW with bursts of varying lengths was correlated with mean ADC value in the first 36 h after cardiac arrest: Pearson's r: 0-12 h: - 0.69 (p = 0.039), 12-24 h: - 0.54 (p = 0.002), 24-36 h: - 0.41 (p = 0.049). Burst similarity measured with bursts of equal lengths was not associated with mean ADC value with cross-correlation or DTW, except for DTW at 60-72 h (- 0.96, p = 0.04). CONCLUSIONS: Burst similarity on EEG after cardiac arrest may be associated with acute brain injury severity on MRI. This association was time dependent when measured using DTW.

7.
J Neuroeng Rehabil ; 21(1): 104, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890696

RESUMEN

BACKGROUND: Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases. METHODS: We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal. RESULTS: We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3-13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8-39] ms) and 26 ms (IQR [12-50] ms). CONCLUSIONS: Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.


Asunto(s)
Esclerosis Múltiple , Humanos , Masculino , Femenino , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Adulto , Persona de Mediana Edad , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Análisis de la Marcha/métodos , Análisis de la Marcha/instrumentación , Marcha/fisiología , Anciano , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Acelerometría/instrumentación , Acelerometría/métodos , Adulto Joven
8.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38610518

RESUMEN

Kumite is a karate sparring competition in which two players face off and perform offensive and defensive techniques. Depending on the players, there may be preliminary actions (hereinafter referred to as "pre-actions"), such as pulling the arms or legs, lowering the shoulders, etc., just before a technique is performed. Since the presence of a pre-action allows the opponent to know the timing of the technique, it is important to reduce pre-actions in order to improve the kumite. However, it is difficult for beginners and intermediate players to accurately identify their pre-actions and to improve them through practice. Therefore, this study aims to construct a practice support system that enables beginners and intermediate players to understand their pre-actions. In this paper, we focus on the forefist punch, one of kumite's punching techniques. We propose a method to estimate the presence or absence of a pre-action based on the similarity between the acceleration data of an arbitrary forefist punch and a previously prepared dataset consisting of acceleration data of the forefist punch without a pre-action. We found that the proposed method can estimate the presence or absence of a pre-action in an arbitrary forefist punch with an accuracy of 86%. We also developed KARATECH as a system to support the practice of reducing pre-actions using the proposed method. KARATECH shows the presence or absence of pre-actions through videos and graphs. The evaluation results confirmed that the group using KARATECH had a lower pre-action rate.


Asunto(s)
Aceleración , Artes Marciales , Humanos , Paraplejía , Grabación de Cinta de Video , Acelerometría
9.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894258

RESUMEN

In the construction industry, falls, slips, and trips (FST) account for 42.3% of all accidents. The primary cause of FST incidents is directly related to the deterioration of workers' body stability. To prevent FST-related accidents, it is crucial to understand the interaction between physical fatigue and body stability in construction workers. Therefore, this study investigates the impact of fatigue on body stability in various construction site environments using Dynamic Time Warping (DTW) analysis. We conducted experiments reflecting six different fatigue levels and four environmental conditions. The analysis process involves comparing changes in DTW values derived from acceleration data obtained through wearable sensors across varying fatigue levels and construction environments. The results reveal the following changes in DTW values across different environments and fatigue levels: for non-obstacle, obstacle, water, and oil conditions, DTW values tend to increase as fatigue levels rise. In our experiments, we observed a significant decrease in body stability against external environments starting from fatigue Levels 3 or 4 (30% and 40% of the maximum failure point). In the non-obstacle condition, the DTW values were 9.4 at Level 0, 12.8 at Level 3, and 23.1 at Level 5. In contrast, for the oil condition, which exhibited the highest DTW values, the values were 10.5 at Level 0, 19.1 at Level 3, and 34.5 at Level 5. These experimental results confirm that the body stability of construction workers is influenced by both fatigue levels and external environmental conditions. Further analysis of recovery time, defined as the time it takes for body stability to return to its original level, revealed an increasing trend in recovery time as fatigue levels increased. This study quantitatively demonstrates through wearable sensor data that, as fatigue levels increase, workers experience decreased body stability and longer recovery times. The findings of this study can inform individual worker fatigue management in the future.


Asunto(s)
Industria de la Construcción , Fatiga , Humanos , Fatiga/fisiopatología , Adulto , Masculino , Equilibrio Postural/fisiología , Dispositivos Electrónicos Vestibles , Accidentes por Caídas/prevención & control
10.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275530

RESUMEN

Realistic appliance power consumption data are essential for developing smart home energy management systems and the foundational algorithms that analyze such data. However, publicly available datasets are scarce and time-consuming to collect. To address this, we propose HYDROSAFE, a hybrid deterministic-probabilistic model designed to generate synthetic appliance power consumption profiles. HYDROSAFE employs the Median Difference Test (MDT) for profile characterization and the Density and Dynamic Time Warping based Spatial Clustering for appliance operation modes (DDTWSC) algorithm to cluster appliance usage according to the corresponding Appliance Operation Modes (AOMs). By integrating stochastic methods, such as white noise, switch-on surge, ripples, and edge position components, the model adds variability and realism to the generated profiles. Evaluation using a normalized DTW-distance matrix shows that HYDROSAFE achieves high fidelity, with an average DTW distance of ten samples at a 1Hz sampling frequency, demonstrating its effectiveness in producing synthetic datasets that closely mimic real-world data.

11.
Environ Monit Assess ; 196(7): 675, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951302

RESUMEN

Vegetation is an important link between land, atmosphere, and water, making its changes of great significance. However, existing research has predominantly focused on long-term vegetation changes, neglecting the intra-annual variations of vegetation. Hence, this study is based on the Enhanced Vegetation Index (EVI) data from 2000 to 2022, with a time step of 16 days, to analyze the intra-annual patterns of vegetation changes in China. The average intra-annual EVI values for each municipal-level administrative region were calculated, and the time-series k-means clustering algorithm was employed to divide these regions, exploring the spatial variations in China's intra-annual vegetation changes. Finally, the ridge regression and random forest methods were utilized to assess the drivers of intra-annual vegetation changes. The results showed that: (1) China's vegetation status exhibits a notable intra-annual variation pattern of "high in summer and low in winter," and the changes are more pronounced in the northern regions than in the southern regions; (2) the intra-annual vegetation changes exhibit remarkable regional disparities, and China can be optimally clustered into four distinct clusters, which align well with China's temperature and precipitation zones; and (3) the intra-annual vegetation changes demonstrate significant correlations with meteorological factors such as dew point temperature, precipitation, maximum temperature, and sea-level pressure. In conclusion, our study reveals the characteristics, spatial patterns and driving forces of intra-annual vegetation changes in China, which contribute to explaining ecosystem response mechanisms, providing valuable insights for ecological research and the formulation of ecological conservation and management strategies.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , China , Estaciones del Año , Plantas , Análisis por Conglomerados , Ecosistema
12.
BMC Bioinformatics ; 24(1): 362, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752445

RESUMEN

BACKGROUND: The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis. METHODS: In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation. CONCLUSION: The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratas , Animales , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/metabolismo , Algoritmos , Ritmo Circadiano/genética , Expresión Génica , Mamíferos/genética
13.
Biometrics ; 79(3): 2719-2731, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36217829

RESUMEN

"Smart"-scales are a new tool for frequent monitoring of weight change as well as weigh-in behavior. These scales give researchers the opportunity to discover patterns in the frequency that individuals weigh themselves over time, and how these patterns are associated with overall weight loss. Our motivating data come from an 18-month behavioral weight loss study of 55 adults classified as overweight or obese who were instructed to weigh themselves daily. Adherence to daily weigh-in routines produces a binary times series for each subject, indicating whether a participant weighed in on a given day. To characterize weigh-in by time-invariant patterns rather than overall adherence, we propose using hierarchical clustering with dynamic time warping (DTW). We perform an extensive simulation study to evaluate the performance of DTW compared to Euclidean and Jaccard distances to recover underlying patterns in adherence time series. In addition, we compare cluster performance using cluster validation indices (CVIs) under the single, average, complete, and Ward linkages and evaluate how internal and external CVIs compare for clustering binary time series. We apply conclusions from the simulation to cluster our real data and summarize observed weigh-in patterns. Our analysis finds that the adherence trajectory pattern is significantly associated with weight loss.


Asunto(s)
Obesidad , Pérdida de Peso , Adulto , Humanos , Factores de Tiempo , Simulación por Computador , Análisis por Conglomerados
14.
Artículo en Inglés | MEDLINE | ID: mdl-37715784

RESUMEN

Ecological momentary assessment (EMA), a structured diary assessment technique, has shown feasibility to capture psychotic(-like) symptoms across different study groups. We investigated whether EMA combined with unsupervised machine learning can distinguish groups on the continuum of genetic risk toward psychotic illness and identify individuals with need for extended healthcare. Individuals with psychotic disorder (PD, N = 55), healthy individuals (HC, N = 25) and HC with first-degree relatives with psychosis (RE, N = 20) were assessed at two sites over 7 days using EMA. Cluster analysis determined subgroups based on similarities in longitudinal trajectories of psychotic symptom ratings in EMA, agnostic of study group assignment. Psychotic symptom ratings were calculated as average of items related to hallucinations and paranoid ideas. Prior to EMA we assessed symptoms using the Positive and Negative Syndrome Scale (PANSS) and the Community Assessment of Psychic Experience (CAPE) to characterize the EMA subgroups. We identified two clusters with distinct longitudinal EMA characteristics. Cluster 1 (NPD = 12, NRE = 1, NHC = 2) showed higher mean EMA symptom ratings as compared to cluster 2 (NPD = 43, NRE = 19, NHC = 23) (p < 0.001). Cluster 1 showed a higher burden on negative (p < 0.05) and positive (p < 0.05) psychotic symptoms in cross-sectional PANSS and CAPE ratings than cluster 2. Findings indicate a separation of PD with high symptom burden (cluster 1) from PD with healthy-like rating patterns grouping together with HC and RE (cluster 2). Individuals in cluster 1 might particularly profit from exchange with a clinician underlining the idea of EMA as clinical monitoring tool.

15.
Int J Health Geogr ; 22(1): 33, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012610

RESUMEN

BACKGROUND: Using human mobility as a proxy for social interaction, previous studies revealed bidirectional associations between COVID-19 incidence and human mobility. For example, while an increase in COVID-19 cases may affect mobility to decrease due to lockdowns or fear, conversely, an increase in mobility can potentially amplify social interactions, thereby contributing to an upsurge in COVID-19 cases. Nevertheless, these bidirectional relationships exhibit variations in their nature, evolve over time, and lack generalizability across different geographical contexts. Consequently, a systematic approach is required to detect functional, spatial, and temporal variations within the intricate relationship between disease incidence and mobility. METHODS: We introduce a spatial time series workflow to investigate the bidirectional associations between human mobility and disease incidence, examining how these associations differ across geographic space and throughout different waves of a pandemic. By utilizing daily COVID-19 cases and mobility flows at the county level during three pandemic waves in the US, we conduct bidirectional Granger causality tests for each county and wave. Furthermore, we employ dynamic time warping to quantify the similarity between the trends of disease incidence and mobility, enabling us to map the spatial distribution of trends that are either similar or dissimilar. RESULTS: Our analysis reveals significant bidirectional associations between COVID-19 incidence and mobility, and we develop a typology to explain the variations in these associations across waves and counties. Overall, COVID-19 incidence exerts a greater influence on mobility than vice versa, but the correlation between the two variables exhibits a stronger connection during the initial wave and weakens over time. Additionally, the relationship between COVID-19 incidence and mobility undergoes changes in direction and significance for certain counties across different waves. These shifts can be attributed to alterations in disease control measures and the presence of evolving confounding factors that differ both spatially and temporally. CONCLUSIONS: This study provides insights into the spatial and temporal dynamics of the relationship between COVID-19 incidence and human mobility across different waves. Understanding these variations is crucial for informing the development of more targeted and effective healthcare policies and interventions, particularly at the city or county level where such policies must be implemented. Although we study the association between mobility and COVID-19 incidence, our workflow can be applied to investigate the associations between the time series trends of various infectious diseases and relevant contributing factors, which play a role in disease transmission.


Asunto(s)
COVID-19 , Humanos , Incidencia , Factores de Tiempo , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Geografía
16.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005449

RESUMEN

This study aimed to develop and evaluate a new step-count algorithm, StepMatchDTWBA, for the accurate measurement of physical activity using wearable devices in both healthy and pathological populations. We conducted a study with 30 healthy volunteers wearing a wrist-worn MOX accelerometer (Maastricht Instruments, NL). The StepMatchDTWBA algorithm used dynamic time warping (DTW) barycentre averaging to create personalised templates for representative steps, accounting for individual walking variations. DTW was then used to measure the similarity between the template and accelerometer epoch. The StepMatchDTWBA algorithm had an average root-mean-square error of 2 steps for healthy gaits and 12 steps for simulated pathological gaits over a distance of about 10 m (GAITRite walkway) and one flight of stairs. It outperformed benchmark algorithms for the simulated pathological population, showcasing the potential for improved accuracy in personalised step counting for pathological populations. The StepMatchDTWBA algorithm represents a significant advancement in accurate step counting for both healthy and pathological populations. This development holds promise for creating more precise and personalised activity monitoring systems, benefiting various health and wellness applications.


Asunto(s)
Acelerometría , Caminata , Humanos , Ejercicio Físico , Marcha , Algoritmos
17.
Sensors (Basel) ; 23(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37631766

RESUMEN

Sensor-based human action recognition (HAR) is considered to have broad practical prospects. It applies to wearable devices to collect plantar pressure or acceleration information at human joints during human actions, thereby identifying human motion patterns. Existing related works have mainly focused on improving recognition accuracy, and have rarely considered energy-efficient management of portable HAR systems. Considering the high sensitivity and energy harvesting ability of triboelectric nanogenerators (TENGs), in this research a TENG which achieved output performance of 9.98 mW/cm2 was fabricated using polydimethylsiloxane and carbon nanotube film for sensor-based HAR as a wearable sensor. Considering real-time identification, data are acquired using a sliding window approach. However, the classification accuracy is challenged by quasi-periodic characteristics of the intercepted sequence. To solve this problem, compensatory dynamic time warping (C-DTW) is proposed, which adjusts the DTW result based on the proportion of points separated by small distances under DTW alignment. Our simulation results show that the classification accuracy of C-DTW is higher than that of DTW and its improved versions (e.g., WDTW, DDTW and softDTW), with almost the same complexity. Moreover, C-DTW is much faster than shapeDTW under the same classification accuracy. Without loss of generality, the performance of the existing DTW versions can be enhanced using the compensatory mechanism of C-DTW.


Asunto(s)
Aceleración , Reconocimiento de Normas Patrones Automatizadas , Humanos , Simulación por Computador , Actividades Humanas , Movimiento (Física)
18.
Sensors (Basel) ; 23(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37687896

RESUMEN

We investigate the distribution of muscle signatures of human hand gestures under Dynamic Time Warping. For this we present a k-Nearest-Neighbors classifier using Dynamic Time Warping for the distance estimate. To understand the resulting classification performance, we investigate the distribution of the recorded samples and derive a method of assessing the separability of a set of gestures. In addition to this, we present and evaluate two approaches with reduced real-time computational cost with regards to their effectiveness and the mechanics behind them. We further investigate the impact of different parameters with regards to practical usability and background rejection, allowing fine-tuning of the induced classification procedure.


Asunto(s)
Gestos , Músculos , Humanos , Análisis por Conglomerados , Registros , Extremidad Superior
19.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112280

RESUMEN

As a low-cost demand-side management application, non-intrusive load monitoring (NILM) offers feedback on appliance-level electricity usage without extra sensors. NILM is defined as disaggregating loads only from aggregate power measurements through analytical tools. Although low-rate NILM tasks have been conducted by unsupervised approaches based on graph signal processing (GSP) concepts, enhancing feature selection can still contribute to performance improvement. Therefore, a novel unsupervised GSP-based NILM approach with power sequence feature (STS-UGSP) is proposed in this paper. First, state transition sequences (STS) are extracted from power readings and featured in clustering and matching, instead of power changes and steady-state power sequences featured in other GSP-based NILM works. When generating graph in clustering, dynamic time warping distances between STSs are calculated for similarity quantification. After clustering, a forward-backward power STS matching algorithm is proposed for searching each STS pair of an operational cycle, utilizing both power and time information. Finally, load disaggregation results are obtained based on STS clustering and matching results. STS-UGSP is validated on three publicly accessible datasets from various regions, generally outperforming four benchmarks in two evaluation metrics. Besides, STS-UGSP estimates closer energy consumption of appliances to the ground truth than benchmarks.

20.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617080

RESUMEN

Nowadays, according to the World Health Organization (WHO), of the world's population suffers from a hearing disorder that makes oral communication with other people challenging. At the same time, in an era of technological evolution and digitization, designing tools that could help these people to communicate daily is the base of much scientific research such as that discussed herein. This article describes one of the techniques designed to transcribe Spanish Sign Language (SSL). A Leap Motion volumetric sensor has been used in this research due to its capacity to recognize hand movements in 3 dimensions. In order to carry out this research project, an impaired hearing subject has collaborated in the recording of 176 dynamic words. Finally, for the development of the research, Dynamic Time Warping (DTW) has been used to compare the samples and predict the input with an accuracy of 95.17%.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Lengua de Signos , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Gestos , Movimiento , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA