Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rec ; 24(1): e202300247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933973

RESUMEN

The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C

2.
J Nanobiotechnology ; 22(1): 352, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902695

RESUMEN

In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Oxidación-Reducción , Ácido Selenioso , Selenio , Selenio/metabolismo , Selenio/química , Ácido Selenioso/metabolismo , Caulobacteraceae/metabolismo , Nanopartículas/química , Electricidad , Nanopartículas del Metal/química , Consorcios Microbianos , Análisis de la Demanda Biológica de Oxígeno
3.
Molecules ; 29(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064889

RESUMEN

This study investigated the structural and electrochemical characteristics of binary and quaternary systems comprising nickel, cobalt, and iron selenides. The powders were obtained via a solvothermal route. X-ray diffraction (XRD) and Raman spectroscopy revealed significant phase diversity. It was observed that increasing the proportion of d-block metals in quaternary systems enhances structural entropy, potentially leading to more homogeneous and stable structures dominated by energetically preferred components such as nickel. The electrochemical analysis indicated that the binary system exhibited a reversible redox reaction, with nickel selenide-based samples demonstrating the highest electrochemically active surface area. Quaternary systems display varying degrees of electrochemical stability. An equal contribution of nickel, cobalt, and iron appears beneficial in achieving stable electrodes. This research contributes to understanding the relationship between transition metal selenides' structural, morphological, and electrochemical properties, providing insights into their potential applications in hydrogen generation.

4.
Microb Cell Fact ; 22(1): 202, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803422

RESUMEN

BACKGROUND: The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS: B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS: This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.


Asunto(s)
Bacillus , Fuentes de Energía Bioeléctrica , Melaza , Cinética , ARN Ribosómico 16S , Electricidad , Electrodos
5.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570746

RESUMEN

MXene, a new intercalation pseudocapacitive electrode material, possesses a high theoretical capacitance for supercapacitor application. However, limited accessible interlayer space and active sites are major challenges to achieve this high capacitance in practical application. In order to stimulate the electrochemical activity of MXene to a greater extent, herein, a method of hydrothermal treatment in NaOH solution with reducing reagent-citric acid is first proposed. After this treatment, the gravimetric capacitance of MXene exhibits a significant enhancement, about 250% of the original value, reaching 543 F g-1 at 2 mV s-1. This improved electrochemical performance is attributed to the tailoring of an interlayer structure and surface chemistry state. An expanded and homogenized interlayer space is created, which provides enough space for electrolyte ions storage. The -F terminations are replaced with O-containing groups, which enhances the hydrophilicity, facilitating the electrolyte's accessibility to MXene's surface, and makes MXene show stronger adsorption for electrolyte ion-H+, providing sufficient electrochemical active sites. The change in terminations further leads to the increase in Ti valence, which becomes more prone to reduction. This work establishes full knowledge of the rational MXene design for electrochemical energy storage applications.

6.
Small ; 18(12): e2105898, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35187788

RESUMEN

Sequential infiltration synthesis (SIS) is an emerging technique for producing inorganic-organic hybrid materials and templated inorganic nanomaterials. The application space for SIS is expanding rapidly in areas such as lithography, filtration, photovoltaics, antireflection, and triboelectricity, but not in the field of electrochemistry. This study performs SIS for the fabrication of porous, transparent, and electrically conductive films of indium zinc oxide (IZO) to evaluate their potential as an electrode for electrochemistry. The electrochemical activity of IZO-coated electrodes is evaluated when their surfaces are modified with ferrocenecarboxylic acid (FcCOOH), a model redox molecule. Results show a 25-fold enhancement in peak current densities mediated by an Fc/Fc+ redox couple for an IZO-coated electrode in comparison with bare electrodes; this is afforded by the porous morphology of the IZO film and the enhanced binding efficiency of FcCOOH on the IZO film. The results confirm the potential of SIS for the preparation of porous transparent conducting oxide electrodes, which will enable the application of SIS-derived materials in various electrochemical fields.


Asunto(s)
Óxidos , Óxido de Zinc , Electroquímica/métodos , Electrodos , Óxidos/química , Porosidad , Óxido de Zinc/química
7.
J Appl Microbiol ; 132(3): 2054-2066, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34796592

RESUMEN

AIMS: Electroactive micro-organisms play a significant role in microbial fuel cells. It is necessary to discover potential resources in plant endophytes. In this study, plant tissues were selected to isolate endophytic bacteria, and the electrochemical activity potential was evaluated. METHODS AND RESULTS: The microbial fuel cell (MFC) is used to evaluate the electricity-producing activity of endophytic bacteria in plant tissues, and the species distribution of micro-organisms in the anode of the MFC after inoculation of plant tissues is determined by high-throughput sequencing. Twenty-six strains of bacteria were isolated from plant tissues belonging to Angelica and Sweet Potato, of which 17 strains from six genera had electrochemical activity, including Bacillus sp., Pleomorphomonas sp., Rahnella sp., Shinella sp., Paenibacillus sp. and Staphylococcus sp. Moreover, the electricity-producing micro-organisms in the plant tissue are enriched. Pseudomonas and Clostridioides are the dominant genera of MFC anode inoculated with angelica tissue. Staphylococcus and Lachnoclostridium are the dominant genera in MFC anode inoculated with sweet potato tissue. And the most representative Gram-positive strain Staphylococcus succinus subsp. succinus H6 and plant tissue were further analysed for electrochemical activity. And a strain numbered H6 and plant tissue had a good electrogenerating activity. CONCLUSION: This study is of great significance for expanding the resource pool of electricity-producing micro-organisms and tapping the potential of plant endophytes for electricity-producing. SIGNIFICANCE AND IMPACT OF STUDY: This is the first study to apply plant endophytes to MFC to explore the characteristics of electricity production. It is of great significance for exploring the diversity of plant endophytes and the relationship between electricity producing bacteria and plants.


Asunto(s)
Bacillus , Paenibacillus , Endófitos , Raíces de Plantas/microbiología
8.
J Basic Microbiol ; 57(12): 1045-1054, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28949408

RESUMEN

Iron (III)-reducing bacteria (IRB) play significant roles in the degradation of naturally occurring organic matter and in the cycling of heavy metals in marine and freshwater sediments. Our previous study has demonstrated the co-occurrence of Geobacteraceae and Methanosarcinamazei as aggregates in the iron (III)-reducing enrichments from a coastal gold mining site on the Jiehe River. The IRB community in the enriched sediments was dominated by members of Comamonadacea, Clostridiaceae, Bacillaceae, Bacteroidaceae, and Geobacteraceae. Furthermore, four representative strains (JhA, JhB, JhC-1, and JhC-2) were isolated and found to belong to the genus of Anaerosinus, Bacillus, and Clostridium with 97.31-98.82% identity of 16S rRNA genes. The iron (III)-reducing ability of all these isolates was identified. Interestingly, JhA showed electrochemical activity with chronoamperometry (CA) and cyclic voltammetry (CV), indicating its ability to oxidize ethanol, liberate, and transfer electrons, thus, expanding our knowledge of a new genus with electrochemical activity. The results revealed the cultivability and electrochemical activity of IRB in coastal riverine sediment and indicated that JhA was an unknown extracellular electron producer with the ability to reduce iron (III). This study expands our knowledge of the electrochemical characterization of the genus Anaerosinus. It is reasonable to expect that these isolates have potential applications in heavy metal bioremediation operations in natural environments.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biota , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Biotechnol Lett ; 38(11): 1903-1910, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27502834

RESUMEN

OBJECTIVE: Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture. RESULTS: Using 'bio-Pd' made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli. CONCLUSION: Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Formiatos/química , Hidrógeno/química , Paladio/química , Fuentes de Energía Bioeléctrica , Desulfovibrio desulfuricans/metabolismo , Electroquímica , Electrones , Escherichia coli/metabolismo , Formiatos/metabolismo , Hidrógeno/metabolismo , Nanoestructuras/química , Paladio/metabolismo , Shewanella/metabolismo
10.
Ecotoxicology ; 24(10): 2175-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26410373

RESUMEN

Microbial fuel cells (MFCs) have emerged as a promising technology for wastewater treatment with concomitant energy production but the performance is usually limited by low microbial activities. This has spurred intensive research interest for microbial enhancement. This study demonstrated an interesting stimulation effect of a static magnetic field (MF) on sludge-inoculated MFCs and explored into the mechanisms. The implementation of a 100-mT MF accelerated the reactor startup and led to increased electricity generation. Under the MF exposure, the activation loss of the MFC was decreased, but there was no increased secretion of redox mediators. Thus, the MF effect was mainly due to enhanced bioelectrochemical activities of anodic microorganisms, which are likely attributed to the oxidative stress and magnetohydrodynamic effects under an MF exposure. This work implies that weak MF may be applied as a simple and effective approach to stimulate microbial activities for various bioelectrochemical energy production and decontamination applications.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles/análisis , Campos Magnéticos , Electricidad
11.
ChemSusChem ; 17(12): e202301659, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38517381

RESUMEN

Carbon-based electrodes are used in flow batteries to provide active centers for vanadium redox reactions. However, strong controversy exists about the exact origin of these centers. This study systematically explores the influence of structural and functional groups on the vanadium redox reactions at carbon surfaces. Pyridine, phenol and butyl containing groups are attached to carbon felt electrodes. To establish a unique comparison between the model and real-world behavior, both non-activated and commercially used thermally activated felts serve as a substrate. Results reveal enhanced half-cell performance in non-activated felt with introduced hydrophilic functionalities. However, this cannot be transferred to the thermally activated felt. Beyond a decrease in electrochemical activity, a reduced long-term stability can be observed. This work indicates that thermal treatment generates active sites that surpass the effect of functional groups and are even impeded by their introduction.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38758442

RESUMEN

Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.

13.
ACS Appl Mater Interfaces ; 16(5): 6569-6578, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261552

RESUMEN

In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine Ti3C2Tx electrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry. The optimized electrode made of stacked large Ti3C2Tx flakes demonstrated excellent reproducibility and resistance to bending conditions, suggesting their use for reliable, robust, and flexible sensors. Reducing electrode thickness resulted in an amplified faradaic-to-capacitance signal, which is advantageous for this application. This led to the deposition of transparent thin Ti3C2Tx films, which maintained their best performance up to 73% transparency. These findings underscore its promise for high-performance, tailored sensors, marking a significant stride in advancing MXene utilization in next-generation electrochemical sensing technologies. The results encourage the analytical electrochemistry field to take advantage of the unique properties that pristine Ti3C2Tx electrodes can provide in sensing through more parametric studies.

14.
J Colloid Interface Sci ; 658: 952-965, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157619

RESUMEN

The development of high-performance electrodes is essential for improving the charge storage performance of rechargeable devices. In this study, local high-entropy C, N co-doped NiCoMnFe-based layered double hydroxide (C/N-NiCoMnFe-LDH, C/N-NCMF) were designed using a novel method. Multi-component synergistic effects can dramatically modulate the surface electron density, crystalline structure, and band-gap of the electrode. Thus, the electrical conductivity, electron transfer, and affinity for the electrolyte can be optimized. Additionally, the C/N-NCMF yielded a high specific capacitance (1454F·g-1) at 1 A·g-1. The electrode also exhibited excellent cycling stability, with 62 % capacitance retention after 5000 cycles. Moreover, the assembled Zn||C/N-NCMF battery and the C/N-NCMF//AC hybrid supercapacitor yielded excellent energy densities of 63.1 and 35.4 Wh·kg-1 at power densities of 1000 and 825 W·kg-1, and superior cycling performance with 69 % and 88.7 % capacitance retention after 1000 and 30,000 cycles, respectively. Furthermore, the electrode maintained high electrochemical activity and stability and ensured high energy density, power density, and cycling stability of the rechargeable devices even at a low temperature (-20 °C). This study paves a new pathway for regulating the electrochemical performance of LDH-based electrodes.

15.
ACS Appl Mater Interfaces ; 16(34): 44767-44779, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143897

RESUMEN

Solid-state lithium-sulfur batteries (SSLSBs) have attracted a great deal of attention because of their high theoretical energy density and intrinsic safety. However, their practical applications are severely impeded by slow redox kinetics and poor cycling stability. Herein, we revealed the detrimental effect of aggregation of lithium polysulfides (LiPSs) on the redox kinetics and reversibility of SSLSBs. As a paradigm, we introduced a multifunctional hyperbranched ionic conducting (HIC) polymer serving as a solid polymer electrolyte (SPE) and cathode binder for constructing SSLSBs featuring high electrochemical activity and high cycling stability. It is demonstrated that the unique structure of the HIC polymer with numerous flexible ether oxygen dangling chains and fast segmental relaxation enables the dissociation of LiPS clusters, facilitates the conversion kinetics of LiPSs, and improves the battery's performance. A Li|HIC SPE|HIC-S battery, in which the HIC polymer acts as an SPE and cathode binder, exhibits an initial capacity of 910.1 mA h gS-1 at 0.1C and 40 °C, a capacity retention of 73.7% at the end of 200 cycles, and an average Coulombic efficiency of approximately 99.0%, demonstrating high potential for application in SSLSBs. This work provides insights into the electrochemistry performance of SSLSBs and provides a guideline for SPE design for SSLSBs with high specific energy and high safety.

16.
Biotechnol Adv ; 66: 108175, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37187358

RESUMEN

Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ∼100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fuentes de Energía Bioeléctrica/microbiología , Bacterias , Archaea , Transporte de Electrón , Electricidad
17.
Micromachines (Basel) ; 14(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837973

RESUMEN

Over the last few decades, titanium(IV) oxide-based materials have gained particular attention due to their stability, corrosion resistance, photocatalytic activity under UV light, and possibilities for modification. Among various structures, TiO2 nanotubes (NTs) grown on Ti foil or glass substrates and obtained through a simple anodization process are widely used as photocatalysts or photoanodes. During the anodization process, the geometry of the nanotubes (length, distribution, diameter, wall thickness, etc.) is easily controlled, though the obtained samples are amorphous. Heat treatment is required to transform the amorphous material into crystalline material. However, instead of time- and cost-consuming furnace treatment, fast and precise laser annealing is applied as a promising alternative. Nonetheless, laser treatment can result in geometry changes of TiO2 NTs, consequently altering, their electrochemical activity. Moreover, modification of the TiO2 NTs surfaces with transition metals and further laser treatment can result in materials with unique photoelectrochemical properties. In this regard, we gathered the latest achievements in the field of laser-treated titania for this review paper. We mainly focused on single structural and morphological changes resulting from pulsed laser annealing and their influence on the electrochemical properties of titania. Finally, the theoretical basis for and combination of laser- and metal-modifications and their impact on the resulting possibilities for electrochemical water splitting are also discussed.

18.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514416

RESUMEN

This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.

19.
Materials (Basel) ; 15(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629499

RESUMEN

The (Pt/YSZ)/YSZ sensor unit is the basic component of the NOx sensor, which can detect the emission of nitrogen oxides in exhaust fumes and optimize the fuel combustion process. In this work, the effect of sintering temperature on adhesion property and electrochemical activity of Pt/YSZ electrode was investigated. Pt/YSZ electrodes were prepared at different sintering temperatures. The microstructure of the Pt/YSZ electrodes, as well as the interface between Pt/YSZ electrode and YSZ electrolyte, were observed by SEM. Chronoamperometry, linear scan voltammetry, and AC impedance were tested by the electrochemical workstation. The results show that increasing the sintering temperature (≤1500 °C) helped to improve adhesion property and electrochemical activity of the Pt/YSZ electrode, which benefited from the formation of the porous structure of the Pt/YSZ electrode. For the (Pt/YSZ) electrode/YSZ electrolyte system, O2- in YSZ is converted into chemisorbed O2 on Pt/YSZ, which is desorbed into the gas phase in the form of molecular oxygen; this process could be the rate-controlling step of the anodic reaction. Increasing the sintering temperature (≤1500 °C) could reduce the reaction activation energy of the Pt/YSZ electrode. The activation energy reaches the minimum value (1.02 eV) when the sintering temperature is 1500 °C.

20.
Nanomaterials (Basel) ; 12(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014654

RESUMEN

Excessive antibiotic residues in food can cause detrimental effects on human health. The establishment of rapid, sensitive, selective, and reliable methods for the detection of antibiotics is highly in demand. With the inherent advantages of high sensitivity, rapid analysis time, and facile miniaturization, the electrochemical sensors have great potential in the detection of antibiotics. The electrochemical platforms comprising carbon nanomaterials (CNMs) have been proposed to detect antibiotic residues. Notably, with the introduction of functional CNMs, the performance of electrochemical sensors can be bolstered. This review first presents the significance of functional CNMs in the detection of antibiotics. Subsequently, we provide an overview of the applications for detection by enhancing the electrochemical behaviour of the antibiotic, as well as a brief overview of the application of recognition elements to detect antibiotics. Finally, the trend and the current challenges of electrochemical sensors based on CNMs in the detection of antibiotics is outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA