Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101409

RESUMEN

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Asunto(s)
Regulación de la Expresión Génica , Súper Potenciadores , Transcripción Genética , Globinas alfa , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Globinas alfa/genética
2.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697116

RESUMEN

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Asunto(s)
Factor de Unión a CCCTC , Diferenciación Celular , Interferón gamma , Interleucina-22 , Interleucinas , Células TH1 , Animales , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Células TH1/inmunología , Ratones , Diferenciación Celular/inmunología , Interferón gamma/metabolismo , Sitios de Unión , Interleucinas/metabolismo , Interleucinas/genética , Elementos de Facilitación Genéticos/genética , Ratones Endogámicos C57BL , Cromatina/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Regulación de la Expresión Génica , Toxoplasma/inmunología , Citocinas/metabolismo , Linaje de la Célula , Células Th17/inmunología
3.
Trends Genet ; 40(4): 326-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177041

RESUMEN

Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.


Asunto(s)
Meiosis , Saccharomyces cerevisiae , Animales , Meiosis/genética , Saccharomyces cerevisiae/genética , Gametogénesis/genética , Segregación Cromosómica/genética , Replicación del ADN , Mamíferos
4.
Trends Genet ; 40(6): 471-479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643034

RESUMEN

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.


Asunto(s)
Replicación del ADN , Elementos de Facilitación Genéticos , ARN Polimerasa III , Transcripción Genética , Recombinación V(D)J , Animales , Humanos , Replicación del ADN/genética , Regulación de la Expresión Génica/genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Transcripción Genética/genética , Recombinación V(D)J/genética
5.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722096

RESUMEN

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Vasos Linfáticos , Proteínas Supresoras de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Pez Cebra/genética , Pez Cebra/embriología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Elementos de Facilitación Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Endoteliales/metabolismo , Linfangiogénesis/genética , Sistemas CRISPR-Cas/genética , Regiones Promotoras Genéticas/genética , Ratones
6.
Proc Natl Acad Sci U S A ; 121(4): e2313677121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241435

RESUMEN

The genomes of several plant viruses contain RNA structures at their 3' ends called cap-independent translation enhancers (CITEs) that bind the host protein factors such as mRNA 5' cap-binding protein eIF4E for promoting cap-independent genome translation. However, the structural basis of such 5' cap-binding protein recognition by the uncapped RNA remains largely unknown. Here, we have determined the crystal structure of a 3' CITE, panicum mosaic virus-like translation enhancer (PTE) from the saguaro cactus virus (SCV), using a Fab crystallization chaperone. The PTE RNA folds into a three-way junction architecture with a pseudoknot between the purine-rich R domain and pyrimidine-rich Y domain, which organizes the overall structure to protrude out a specific guanine nucleotide, G18, from the R domain that comprises a major interaction site for the eIF4E binding. The superimposable crystal structures of the wild-type, G18A, G18C, and G18U mutants suggest that the PTE scaffold is preorganized with the flipped-out G18 ready to dock into the eIF4E 5' cap-binding pocket. The binding studies with wheat and human eIF4Es using gel electrophoresis and isothermal titration calorimetry, and molecular docking computation for the PTE-eIF4E complex demonstrated that the PTE structure essentially mimics the mRNA 5' cap for eIF4E binding. Such 5' cap mimicry by the uncapped and structured viral RNA highlights how viruses can exploit RNA structures to mimic the host protein-binding partners and bypass the canonical mechanisms for their genome translation, providing opportunities for a better understanding of virus-host interactions and non-canonical translation mechanisms found in many pathogenic RNA viruses.


Asunto(s)
Cactaceae , Elementos de Facilitación Genéticos , Virus de Plantas , Biosíntesis de Proteínas , Humanos , Cactaceae/virología , Factor 4E Eucariótico de Iniciación/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Virus de Plantas/genética
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38485768

RESUMEN

Enhancers, noncoding DNA fragments, play a pivotal role in gene regulation, facilitating gene transcription. Identifying enhancers is crucial for understanding genomic regulatory mechanisms, pinpointing key elements and investigating networks governing gene expression and disease-related mechanisms. Existing enhancer identification methods exhibit limitations, prompting the development of our novel multi-input deep learning framework, termed Enhancer-MDLF. Experimental results illustrate that Enhancer-MDLF outperforms the previous method, Enhancer-IF, across eight distinct human cell lines and exhibits superior performance on generic enhancer datasets and enhancer-promoter datasets, affirming the robustness of Enhancer-MDLF. Additionally, we introduce transfer learning to provide an effective and potential solution to address the prediction challenges posed by enhancer specificity. Furthermore, we utilize model interpretation to identify transcription factor binding site motifs that may be associated with enhancer regions, with important implications for facilitating the study of enhancer regulatory mechanisms. The source code is openly accessible at https://github.com/HaoWuLab-Bioinformatics/Enhancer-MDLF.


Asunto(s)
Aprendizaje Profundo , Elementos de Facilitación Genéticos , Humanos , Genómica/métodos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas
8.
EMBO Rep ; 25(1): 254-285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177910

RESUMEN

Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Pluripotentes Inducidas , Humanos , Neuronas Dopaminérgicas/metabolismo , Multiómica , Mesencéfalo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
9.
Bioessays ; : e2400101, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38922969

RESUMEN

Enhancers are short segments of regulatory DNA that control when and in which cell-type genes should be turned on in response to a variety of extrinsic and intrinsic signals. At the molecular level, enhancers serve as a genomic scaffold that recruits sequence-specific transcription factors and co-activators to facilitate transcription from linked promoters. However, it remains largely unclear how enhancers communicate with appropriate target promoters in the context of higher-order genome topology. In this review, we discuss recent progress in our understanding of the functional interplay between enhancers, genome topology, and the molecular properties of transcription machineries in gene regulation. We suggest that the activities of transcription hubs are highly regulated through the dynamic rearrangement of enhancer-promoter and promoter-promoter connectivity during animal development.

10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364113

RESUMEN

Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , ADN , ADN Intergénico/genética , ADN Intergénico/metabolismo , Elementos de Facilitación Genéticos
11.
J Pathol ; 262(4): 395-409, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38332730

RESUMEN

Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Empalme del ARN/genética , Exones/genética , Reino Unido , Quinasa de Punto de Control 2/genética
12.
Cell Mol Life Sci ; 81(1): 309, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060446

RESUMEN

The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPß, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.


Asunto(s)
Cromatina , Relojes Circadianos , Ácidos Grasos , Hígado , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Animales , Cromatina/metabolismo , Cromatina/genética , Hígado/metabolismo , Ratones , Relojes Circadianos/genética , Obesidad/metabolismo , Obesidad/genética , Ácidos Grasos/metabolismo , Masculino , Dieta Alta en Grasa/efectos adversos , Ensamble y Desensamble de Cromatina , Ritmo Circadiano/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Metabolismo de los Lípidos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
13.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902506

RESUMEN

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma Humano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica
14.
BMC Genomics ; 25(1): 272, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475725

RESUMEN

BACKGROUND: Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle regeneration, maintenance, and growth. Like embryonic myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study, we aimed to identify additional transcription factors that control gene expression during bovine satellite cell proliferation and differentiation. RESULTS: Using chromatin immunoprecipitation followed by sequencing, we identified 56,973 and 54,470 genomic regions marked with both the histone modifications H3K4me1 and H3K27ac, which were considered active enhancers, and 50,956 and 59,174 genomic regions marked with H3K27me3, which were considered repressed enhancers, in proliferating and differentiating bovine satellite cells, respectively. In addition, we identified 1,216 and 1,171 super-enhancers in proliferating and differentiating bovine satellite cells, respectively. Analyzing these enhancers showed that in proliferating bovine satellite cells, active enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation whereas repressed enhancers were associated with genes essential for myoblast differentiation, and that in differentiating satellite cells, active enhancers were associated with genes essential for myoblast differentiation or muscle contraction whereas repressed enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation. Active enhancers in proliferating bovine satellite cells were enriched with binding sites for many transcription factors such as MYF5 and the AP-1 family transcription factors; active enhancers in differentiating bovine satellite cells were enriched with binding sites for many transcription factors such as MYOG and TFAP4; and repressed enhancers in both proliferating and differentiating bovine satellite cells were enriched with binding sites for NF-kB, ZEB-1, and several other transcription factors. The role of TFAP4 in satellite cell or myoblast differentiation was previously unknown, and through gene knockdown and overexpression, we experimentally validated a critical role for TFAP4 in the differentiation and fusion of bovine satellite cells into myofibers. CONCLUSIONS: Satellite cell proliferation and differentiation are controlled by many transcription factors such as AP-1, TFAP4, NF-kB, and ZEB-1 whose roles in these processes were previously unknown in addition to those transcription factors such as MYF5 and MYOG whose roles in these processes are widely known.


Asunto(s)
Cromatina , Células Satélite del Músculo Esquelético , Animales , Bovinos , Cromatina/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Desarrollo de Músculos/genética
15.
Mol Cancer ; 23(1): 122, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844984

RESUMEN

Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Animales , Epigénesis Genética , Terapia Molecular Dirigida , Transición Epitelial-Mesenquimal
16.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862995

RESUMEN

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Asunto(s)
Adenocarcinoma del Pulmón , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Mutación , Biomarcadores de Tumor/genética , Femenino , Masculino , Variación Estructural del Genoma , Genómica/métodos , Persona de Mediana Edad , Pronóstico , Anciano
17.
Biochem Soc Trans ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119657

RESUMEN

Transcription occurs as irregular bursts in a very wide range of systems, including numerous different species and many genes within these. In this review, we examine the underlying theories, discuss how these relate to experimental measurements, and explore some of the discrepancies that have emerged among various studies. Finally, we consider more recent works that integrate novel concepts, such as the involvement of biomolecular condensates in enhancer-promoter interactions and their effects on the dynamics of transcriptional bursting.

18.
J Exp Zool B Mol Dev Evol ; 342(2): 85-100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369890

RESUMEN

TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.


Asunto(s)
Dedos/anomalías , Enfermedades del Cabello , Síndrome de Langer-Giedion , Nariz/anomalías , Secuencias Reguladoras de Ácidos Nucleicos , Pez Cebra , Animales , Ratones , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Genoma , Secuencia de Bases , Expresión Génica , Mamíferos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Transfusion ; 64(6): 1083-1096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644556

RESUMEN

BACKGROUND: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS: Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS: In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION: This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.


Asunto(s)
Antígenos de Grupos Sanguíneos , Epigénesis Genética , Humanos , Antígenos de Grupos Sanguíneos/genética , Factor de Transcripción GATA1/genética , Factores de Transcripción de Tipo Kruppel/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Mol Pharm ; 21(8): 3880-3888, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941485

RESUMEN

Oral delivery of potent peptide drugs provides key formulation challenges in the pharmaceutical industry: stability, solubility, and permeability. Intestinal permeation enhancers (PEs) can overcome the low oral bioavailability by improving the drug permeability. Conventional in vitro and ex vivo models for assessing PEs fail to predict efficacy in vivo. Here, we compared Caco-2 cells cultured in the conventional static Transwell model to a commercially available continuous flow microfluidic Gut-on-a-Chip model. We determined baseline permeability of FITC-Dextan 3 kDa (FD3) in Transwell (5.3 ± 0.8 × 10-8 cm/s) vs Chip (3.2 ± 1.8 × 10-7 cm/s). We screened the concentration impact of two established PEs sodium caprate and sucrose monolaurate and indicated a requirement for higher enhancer concentration in the Chip model to elicit equivalent efficacy e.g., 10 mM sodium caprate in Transwells vs 25 mM in Chips. Fasted and fed state simulated intestinal fluids (FaSSIF/FeSSIF) were introduced into the Chip and increased basal FD3 permeability by 3-fold and 20-fold, respectively, compared to 4-fold and 4000-fold in Transwells. We assessed the utility of this model to peptides (Insulin and Octreotide) with PEs and observed much more modest permeability enhancement in the Chip model in line with observations in ex vivo and in vivo preclinical models. These data indicate that microfluidic Chip models are well suited to bridge the gap between conventional in vitro and in vivo models.


Asunto(s)
Absorción Intestinal , Péptidos , Permeabilidad , Células CACO-2 , Humanos , Péptidos/química , Absorción Intestinal/efectos de los fármacos , Administración Oral , Dispositivos Laboratorio en un Chip , Ácidos Decanoicos/química , Disponibilidad Biológica , Sacarosa/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Solubilidad , Composición de Medicamentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA