Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106394

RESUMEN

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Asunto(s)
Técnicas Biosensibles/instrumentación , Microfluídica/métodos , Sudor/química , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Impedancia Eléctrica , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Fluorometría , Humanos , Inmunoensayo , Dispositivos Laboratorio en un Chip , Piel/química , Dispositivos Electrónicos Vestibles
2.
ACS Appl Mater Interfaces ; 12(49): 55255-55261, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33252224

RESUMEN

Elastomers and, in particular, polydimethylsiloxane (PDMS) are widely adopted as biocompatible mechanically compliant substrates for soft and flexible micro-nanosystems in medicine, biology, and engineering. However, several applications require such low thicknesses (e.g., <100 µm) that make peeling-off critical because very thin elastomers become delicate and tend to exhibit strong adhesion with carriers. Moreover, microfabrication techniques such as photolithography use solvents which swell PDMS, introducing complexity and possible contamination, thus limiting industrial scalability and preventing many biomedical applications. Here, we combine low-adhesion and rectangular carrier substrates, adhesive Kapton frames, micromilling-defined shadow masks, and adhesive-neutralizing paper frames for enabling fast, easy, green, contaminant-free, and scalable manufacturing of thin elastomer devices, with both simplified peeling and handling. The accurate alignment between the frame and shadow masks can be further facilitated by micromilled marking lines on the back side of the low-adhesion carrier. As a proof of concept, we show epidermal sensors on a 50 µm-thick PDMS substrate for measuring strain, the skin bioimpedance and the heart rate. The proposed approach paves the way to a straightforward, green, and scalable fabrication of contaminant-free thin devices on elastomers for a wide variety of applications.


Asunto(s)
Elastómeros/química , Electrónica/instrumentación , Materiales Biocompatibles/química , Dimetilpolisiloxanos/química , Impedancia Eléctrica , Electrocardiografía , Electrodos , Electrónica/métodos , Epidermis/fisiología , Humanos
3.
Adv Sci (Weinh) ; 5(3): 1700771, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29593975

RESUMEN

Electrically interfacing the skin for monitoring personal health condition is the basis of skin-contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (<1 µm). Tattoo electrode-skin contact impedance is characterized on short- (1 h) and long-term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin-contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long-term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large-scale production of low-cost sensing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA