Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(1): 717-726, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871197

RESUMEN

Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, ß-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC's ability to mediate SF responsiveness relies on the "force-from-filament" principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.


Asunto(s)
Asparagina/metabolismo , Canales Epiteliales de Sodio/metabolismo , Matriz Extracelular/metabolismo , Dominios Proteicos/genética , Animales , Asparagina/química , Modelos Animales de Enfermedad , Células Endoteliales , Endotelio Vascular/citología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Canales Epiteliales de Sodio/química , Canales Epiteliales de Sodio/genética , Femenino , Glicosilación , Células HEK293 , Humanos , Hipertensión/etiología , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Oocitos , Técnicas de Placa-Clamp , Mutación Puntual , Polisacáridos/química , Estrés Mecánico , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA