Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333022

RESUMEN

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Asunto(s)
Evolución Molecular Dirigida , Aprendizaje Automático , Serotonina/metabolismo , Algoritmos , Secuencia de Aminoácidos , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Fotones , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sueño/fisiología , Vigilia/fisiología
2.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236296

RESUMEN

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Asunto(s)
Miedo , Genes Inmediatos-Precoces , Factores de Intercambio de Guanina Nucleótido , Memoria , Transducción de Señal , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Proto-Oncogénicas c-fos
3.
Proc Natl Acad Sci U S A ; 119(22): e2116797119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613054

RESUMEN

Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994­mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.


Asunto(s)
Benzamidas , Giro Dentado , Inhibidores de Histona Desacetilasas , Memoria a Largo Plazo , Fenilendiaminas , Animales , Benzamidas/farmacología , Comunicación Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenilendiaminas/farmacología , RNA-Seq , Análisis de la Célula Individual
4.
Psychol Med ; : 1-9, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245946

RESUMEN

BACKGROUND: Fear learning is a core component of conceptual models of how adverse experiences may influence psychopathology. Specifically, existing theories posit that childhood experiences involving childhood trauma are associated with altered fear learning processes, while experiences involving deprivation are not. Several studies have found altered fear acquisition in youth exposed to trauma, but not deprivation, although the specific patterns have varied across studies. The present study utilizes a longitudinal sample of children with variability in adversity experiences to examine associations among childhood trauma, fear learning, and psychopathology in youth. METHODS: The sample includes 170 youths aged 10-13 years (M = 11.56, s.d. = 0.47, 48.24% female). Children completed a fear conditioning task while skin conductance responses (SCR) were obtained, which included both acquisition and extinction. Childhood trauma and deprivation severity were measured using both parent and youth report. Symptoms of anxiety, externalizing problems, and post-traumatic stress disorder (PTSD) were assessed at baseline and again two-years later. RESULTS: Greater trauma-related experiences were associated with greater SCR to the threat cue (CS+) relative to the safety cue (CS-) in early fear acquisition, controlling for deprivation, age, and sex. Deprivation was unrelated to fear learning. Greater SCR to the threat cue during early acquisition was associated with increased PTSD symptoms over time controlling for baseline symptoms and mediated the relationship between trauma and prospective changes in PTSD symptoms. CONCLUSIONS: Childhood trauma is associated with altered fear learning in youth, which may be one mechanism linking exposure to violence with the emergence of PTSD symptoms in adolescence.

5.
Dev Sci ; : e13505, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549194

RESUMEN

Learning safe versus dangerous cues is crucial for survival. During development, parents can influence fear learning by buffering their children's stress response and increasing exploration of potentially aversive stimuli. Rodent findings suggest that these behavioral effects are mediated through parental presence modulation of the amygdala and medial prefrontal cortex (mPFC). Here, we investigated whether similar parental modulation of amygdala and mPFC during fear learning occurs in humans. Using a within-subjects design, behavioral (final N = 48, 6-17 years, mean = 11.61, SD = 2.84, 60% females/40% males) and neuroimaging data (final N = 39, 6-17 years, mean = 12.03, SD = 2.98, 59% females/41% males) were acquired during a classical fear conditioning task, which included a CS+ followed by an aversive noise (US; 75% reinforcement rate) and a CS-. Conditioning occurred once in physical contact with the participant's parent and once alone (order counterbalanced). Region of interest analyses examined the unconditioned stress response by BOLD activation to the US (vs. implicit baseline) and learning by activation to the CS+ (vs. CS-). Results showed that during US presentation, parental presence reduced the centromedial amygdala activity, suggesting buffering of the unconditioned stress response. In response to learned stimuli, parental presence reduced mPFC activity to the CS+ (relative to the CS-), although this result did not survive multiple comparisons' correction. These preliminary findings indicate that parents modulate amygdala and mPFC activity during exposure to unconditioned and conditioned fear stimuli, potentially providing insight into the neural mechanisms by which parents act as a social buffer during fear learning. RESEARCH HIGHLIGHTS: (1)This study used a within-participant experimental design to investigate how parental presence (vs. absence) affects youth's neural responses in a classical fear conditioning task. (2)Parental presence reduced the youth's centromedial amygdala activation to the unconditioned stimulus (US), suggesting parental buffering of the neural unconditioned response (UR). (3)Parental presence reduced the youth's mPFC activation to a conditioned threat cue (CS+) compared to a safety cue (CS-), suggesting possible parental modulation of fear learning.

6.
Cereb Cortex ; 33(20): 10702-10710, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689831

RESUMEN

Experiencing family material hardship has been shown to be associated with disruptions in physical and psychological development. However, the association between material hardship and functional connectivity in the fronto-limbic circuit during fear learning is unclear. A total of 161 healthy young adults aged 17-28 were recruited in our brain imaging study, using the Fear Conditioning Task to test the associations between material hardship and connectivity in fronto-limbic circuit and psychopathology. The results showed that family material hardship was linked to higher positive connectivity between the left amygdala and bilateral dorsal anterior cingulate cortex, as well as higher negative connectivity between the left hippocampus and right ventromedial prefrontal cortex. A mediation analysis showed that material hardship was associated with depression via amygdala functional connectivity (indirect effect = 0.228, P = 0.016), and also indirectly associated with aggression and anger-hostility symptoms through hippocampal connections (aggression: indirect effect = 0.057, P = 0.001; anger-hostility: indirect effect = 0.169, P = 0.048). That is, family material hardship appears to affect fronto-limbic circuits through changes in specific connectivity, and these specific changes, in turn, could lead to specific psychological symptoms. The findings have implications for designing developmentally sensitive interventions to mitigate the emergence of psychopathological symptoms.

7.
Neurobiol Learn Mem ; 200: 107735, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813080

RESUMEN

The midbrain periaqueductal gray matter, especially the dorsolateral portion (dlPAG), coordinates immediate defensive responses (DR) to threats, but also ascends forebrain information for aversive learning. The synaptic dynamics in the dlPAG regulate the intensity and type of behavioral expression, as well as long-term processes such as memory acquisition, consolidation, and retrieval. Among several neurotransmitters and neural modulators, nitric oxide seems to play an important regulatory role in the immediate expression of DR, but it remains unclear if this gaseous on-demand neuromodulator contributes to aversive learning. Therefore, the role of nitric oxide in the dlPAG was investigated, during conditioning in an olfactory aversive task. The behavioral analysis consisted of freezing and crouch-sniffing in the conditioning day after glutamatergic NMDA agonist injection into the dlPAG. Two days later, rats were re-exposed to the odor cue and avoidance was measured. 7NI, a selective neuronal nitric oxide synthase inhibitor (40 and 100 nmol), injected before NMDA (50 pmol) impaired immediate DR and consequent aversive learning. The scavenging of extrasynaptic nitric oxide by C-PTIO (1 and 2 nmol) induced similar results. Moreover, spermine NONOate, a nitric oxide donor (5, 10, 20, 40, and 80 nmol), produced DR by itself, but only the low dose also promoted learning. The following experiments utilized a fluorescent probe, DAF-FM diacetate (5 µM), directly into the dlPAG, to quantify nitric oxide in the three previous experimental situations. Nitric oxide levels were increased after NMDA stimulation, decreased after 7NI, and increased after spermine NONOate, in line with alterations in defensive expression. Altogether, the results indicate that nitric oxide plays a modulatory and decisive role in the dlPAG regarding immediate DR and aversive learning.


Asunto(s)
Reacción de Prevención , Óxido Nítrico , Ratas , Animales , Óxido Nítrico/metabolismo , Reacción de Prevención/fisiología , Ratas Wistar , Miedo/fisiología , N-Metilaspartato , Sustancia Gris Periacueductal/fisiología , Estimulación Química , Neurotransmisores
8.
Psychol Med ; 53(11): 5301-5311, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36093766

RESUMEN

BACKGROUND: The association between anxious mood and aberrant fear learning mechanisms has not been fully elucidated. Studying how fear conditioning and extinction constructs relate to anxiety symptoms and reactivity to stressful and benign moments in everyday life provides a powerful addition to experimental paradigms. METHOD: Fifty-one young adults completed laboratory-based differential conditioning and extinction tasks with (CS + ) and without (CS-) an aversive unconditional stimulus (US). Electrodermal skin conductance responses were measured during each phase, followed by ecological momentary assessment (EMA) tapping anxiety and stressors six times daily for seven days (2, 142 moments). RESULTS: Conditioned electrodermal reactivity to the CS + and overgeneralisation to the CS- were associated with greater change in anxiety (measured via EMA), across non-stressful situations, remaining the same across stressful situations. Likewise, during extinction when the CS + is now safe, more electrodermal reactivity to the CS + was associated with more anxiety change across non-stressful situations and remained the same across stressful situations. Also, during extinction when threat is absent, more electrodermal reactivity at the late stage of the CS- was associated with less momentary anxiety change in response to stressful situations; more electrodermal activity at the late stage of the CS + was associated with more anxiety change across non-stressful situations and remained the same across stressful situations. CONCLUSIONS: Sampling 'in vivo' emotion and stress experiences, study findings revealed links between conditioned electrodermal reactivity and overgeneralisation to safe stimuli and heightened anxious reactivity during non-stressful (i.e. safe) moments in daily life, coupled with less change in response to actual stressors.


Asunto(s)
Evaluación Ecológica Momentánea , Extinción Psicológica , Adulto Joven , Humanos , Extinción Psicológica/fisiología , Ansiedad/psicología , Miedo/fisiología , Condicionamiento Clásico/fisiología , Respuesta Galvánica de la Piel
9.
J Exp Child Psychol ; 226: 105553, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36202012

RESUMEN

Observational fear learning is common in children as they learn to fear by observing their parents. Although adaptive, it can also contribute to the development of fear-related psychopathologies such as anxiety disorders. Therefore, it is important to identify and study the factors that modulate children's sensitivity to observational fear learning. For instance, observational fear learning can be facilitated by the synchronization of biological systems between two people. In parent-child dyads, physiological concordance is important and varies according to the attachment relationship, among others. We investigated the joint effect of parent-child physiological concordance and attachment on observational fear learning in children. A total of 84 parent-child dyads participated in this study. Parents were filmed while exposed to a fear-conditioning protocol, where one stimulus was associated with a shock (CS+) and the other was not (CS-). This recording was then shown to the children (observational learning). Thereafter, both stimuli (CS+ and CS-) were presented to the children without any shock (direct expression test). For both the parent and child, skin conductance activity was recorded throughout the entire procedure. We measured physiological concordance between the parent's phasic skin conductance signal during conditioning and the child's signal during the observational learning stage. Children showing stronger concordance and a less secure relationship with their parent exhibited higher levels of fear to the CS+, as indicated by a heightened skin conductance response during the direct expression test. Thus, when children have an insecure relationship with their parent, strong physiological concordance may increase their sensitivity to observational fear learning.


Asunto(s)
Miedo , Aprendizaje , Humanos , Miedo/fisiología , Aprendizaje/fisiología , Padres , Relaciones Padres-Hijo
10.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983000

RESUMEN

Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.


Asunto(s)
Miedo , N-Metilaspartato , Humanos , Miedo/fisiología , Endocannabinoides/fisiología , Extinción Psicológica/fisiología , Norepinefrina , Transmisión Sináptica/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo
11.
J Neurosci ; 41(14): 3222-3233, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33622774

RESUMEN

Growing animal data evince a critical role of the sensory cortex in the long-term storage of aversive conditioning, following acquisition and consolidation in the amygdala. Whether and how this function is conserved in the human sensory cortex is nonetheless unclear. We interrogated this question in a human aversive conditioning study using multidimensional assessments of conditioning and long-term (15 d) retention. Conditioned stimuli (CSs; Gabor patches) were calibrated to differentially activate the parvocellular (P) and magnocellular (M) visual pathways, further elucidating cortical versus subcortical mechanisms. Full-blown conditioning and long-term retention emerged for M-biased CS (vs limited effects for P-biased CS), especially among anxious individuals, in all four dimensions assessed: threat appraisal (threat ratings), physiological arousal (skin conductance response), perceptual learning [discrimination sensitivity (d') and response speed], and cortical plasticity [visual evoked potentials (VEPs) and cortical current density]. Interestingly, while behavioral, physiological, and VEP effects were comparable at immediate and delayed assessments, the cortical substrates evolved markedly over time, transferring from high-order cortices [inferotemporal/fusiform cortex and orbitofrontal cortex (OFC)] immediately to the primary and secondary visual cortex after the delay. In sum, the contrast between P- and M-biased conditioning confirms privileged conditioning acquisition via the subcortical pathway while the immediate cortical plasticity lends credence to the triadic amygdala-OFC-fusiform network thought to underlie threat processing. Importantly, long-term retention of conditioning in the basic sensory cortices supports the conserved role of the human sensory cortex in the long-term storage of aversive conditioning.SIGNIFICANCE STATEMENT A growing network of neural substrates has been identified in threat learning and memory. The sensory cortex plays a key role in long-term threat memory in animals, but such a function in humans remains unclear. To explore this problem, we conducted multidimensional assessments of immediate and delayed (15 d) effects of human aversive conditioning. Behavioral, physiological, and scalp electrophysiological data demonstrated conditioning effects and long-term retention. High-density EEG intracranial source analysis further revealed the cortical underpinnings, implicating high-order cortices immediately and primary and secondary visual cortices after the long delay. Therefore, while high-order cortices support aversive conditioning acquisition (i.e., threat learning), the human sensory cortex (akin to the animal homolog) underpins long-term storage of conditioning (i.e., long-term threat memory).


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Potenciales Evocados Visuales/fisiología , Miedo/fisiología , Memoria a Largo Plazo/fisiología , Corteza Somatosensorial/fisiología , Electroencefalografía/métodos , Miedo/psicología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Estimulación Luminosa/métodos , Adulto Joven
12.
J Biol Chem ; 297(3): 101034, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339735

RESUMEN

Synaptic plasticity is critical for brain function, including learning and memory. It is regulated by gene transcription and protein synthesis as well as posttranslational modifications at synapses. Although protein acetylation has been shown to be involved in the regulation of synaptic plasticity, this was mainly for histone protein acetylation. To investigate whether acetylation of nonhistone proteins is important for synaptic plasticity, we analyzed mouse brain acetylome and found that calmodulin (CaM), a ubiquitous Ca2+ sensor, was acetylated on three lysine residues, which were conserved across species. NMDA receptor-dependent long-term potentiation (LTP) is considered the most compelling form of synaptic plasticity. During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), which is essential for LTP induction. By using home-generated and site-specific antibodies against acetylated CaM, we show that CaM acetylation is upregulated by neural activities in an NMDA receptor-dependent manner. Moreover, mutation of acetyllysines in CaM1 proteins disrupts synaptic plasticity and fear learning in a mouse model. We further demonstrate that acetylation of CaM reduces the binding free energy and increases the binding affinity toward CaMKIIα, a protein kinase pivotal to synaptic plasticity and learning. Taken together, our results demonstrate importance of CaM acetylation in regulating synaptic plasticity and learning.


Asunto(s)
Calmodulina/metabolismo , Miedo , Aprendizaje , Plasticidad Neuronal , Acetilación , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/genética , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
J Biol Chem ; 297(3): 101044, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358562

RESUMEN

Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice.


Asunto(s)
Encéfalo/metabolismo , Calmodulina/metabolismo , Miedo , Aprendizaje , Coactivador 3 de Receptor Nuclear/metabolismo , Acetilación , Animales , Calcio/metabolismo , Calmodulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Coactivador 3 de Receptor Nuclear/genética
14.
Neuroimage ; 263: 119648, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162633

RESUMEN

Humans often benefit from social cues when learning about the world. For instance, learning about threats from others can save the individual from dangerous first-hand experiences. Familiarity is believed to increase the effectiveness of social learning, but it is not clear whether it plays a role in learning about threats. Using functional magnetic resonance imaging, we undertook a naturalistic approach and investigated whether there was a difference between observational fear learning from friends and strangers. Participants (observers) witnessed either their friends or strangers (demonstrators) receiving aversive (shock) stimuli paired with colored squares (observational learning stage). Subsequently, participants watched the same squares, but without receiving any shocks (direct-expression stage). We observed a similar pattern of brain activity in both groups of observers. Regions related to threat responses (amygdala, anterior insula, anterior cingulate cortex) and social perception (fusiform gyrus, posterior superior temporal sulcus) were activated during the observational phase, possibly reflecting the emotional contagion process. The anterior insula and anterior cingulate cortex were also activated during the subsequent stage, indicating the expression of learned threat. Because there were no differences between participants observing friends and strangers, we argue that social threat learning is independent of the level of familiarity with the demonstrator.


Asunto(s)
Amigos , Imagen por Resonancia Magnética , Humanos , Miedo/fisiología , Emociones , Amígdala del Cerebelo/fisiología
15.
Alcohol Clin Exp Res ; 46(12): 2177-2190, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36349797

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature. METHODS: We used a 15-day exposure to the 5% w/v EtOH low-fat Lieber-DeCarli liquid diet in combination with the stress-enhanced fear learning (SEFL) paradigm to investigate the effects of chronic EtOH consumption on the development of a PTSD-like phenotype. Next, we used a reverse transcription quantitative real-time polymerase chain reaction to quantify mRNA expression of glial cell markers GFAP (astrocytes) and CD68 (microglia) following severe footshock stress in EtOH-withdrawn rats. Finally, we tested the functional contribution of dorsal hippocampal (DH) astrocytes in the development of SEFL in EtOH-dependent rats using astrocyte-specific Gi designer receptors exclusively activated by designer drugs (Gi -DREADD). RESULTS: Results demonstrate that chronic EtOH consumption and withdrawal exacerbate future SEFL. Additionally, we found significantly increased GFAP mRNA expression in the dorsal and ventral hippocampus and amygdalar complex following the severe stressor in EtOH-withdrawn animals. Finally, the stimulation of the astroglial Gi -DREADD during EtOH withdrawal prevented the EtOH-induced enhancement of SEFL. CONCLUSIONS: Collectively, results indicate that prior EtOH dependence and withdrawal combined with a severe stressor potentiate future enhanced fear learning. Furthermore, DH astrocytes significantly contribute to this change in behavior. Overall, these studies provide insight into the comorbidity of AUD and PTSD and the potential neurobiological mechanisms behind increased susceptibility to a PTSD-like phenotype in individuals with AUD.


Asunto(s)
Alcoholismo , Astrocitos , Animales , Ratas , Astrocitos/metabolismo , Miedo , Hipocampo/metabolismo , Etanol/farmacología , Etanol/metabolismo , ARN Mensajero/metabolismo
16.
J Exp Child Psychol ; 221: 105461, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35617793

RESUMEN

Adults quickly orient toward sources of danger and deploy fight-or-flight tactics to manage threatening situations. In contrast, infants who cannot implement the safety strategies available to adults and depend heavily on caregivers for survival are more likely to turn toward familiar adults, such as their parents, to help them navigate threatening circumstances. However, work has yet to investigate how readily children and adolescents orient toward their parents in threatening or fearful contexts. The current work addressed this question using a visual search paradigm that included arrays of parents' and strangers' faces as target and distractor stimuli, preceded by a fear or neutral emotional priming procedure. Linear mixed-effects models showed that children and adolescents (N = 88, age range = 4-17 years; 42M/46F) were faster to search for the face of their parent than of a stranger. However, fear priming attenuated this effect of the parent on search times, such that children and adolescents were significantly slower to orient toward their parent in an array of strangers' faces if they were first primed with fear as opposed to a neutral video. This work indicates that fear priming may phasically interfere with parental orienting during childhood and adolescence, possibly because fear reallocates attention away from parents and toward (potentially threatening) unfamiliar people in the environment to facilitate the development of independent threat learning and coping systems.


Asunto(s)
Expresión Facial , Miedo , Adolescente , Adulto , Atención , Niño , Preescolar , Emociones , Miedo/psicología , Humanos , Lactante , Padres/psicología
17.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328819

RESUMEN

Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.


Asunto(s)
Memoria , Esfingomielina Fosfodiesterasa , Animales , Condicionamiento Clásico/fisiología , Señales (Psicología) , Miedo/fisiología , Femenino , Masculino , Memoria/fisiología , Ratones , Esfingomielina Fosfodiesterasa/genética
18.
J Neurophysiol ; 126(3): 864-874, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379522

RESUMEN

Space coding affects perception of stimuli associated to negative valence: threatening stimuli presented within the peripersonal space (PPS) speed up behavioral responses compared with nonthreatening events. However, it remains unclear whether the association between stimuli and their negative valence is acquired in a body part-centered reference system, a main feature of the PPS coding. Here we test the hypothesis that associative learning takes place in hand-centered coordinates and can therefore remap according to hand displacement. In two experiments, we used a Pavlovian fear-learning paradigm to associate a visual stimulus [light circle, the conditioned stimulus (CS)] with an aversive stimulus (electrocutaneous shock) applied on the right hand only when the CS was displayed close (CS+) but when not far from it (CS-). Measuring the skin conductance response (SCR), we observed successful fear conditioning, with increased anticipatory fear responses associated with CS+. Crucially, experiment I showed a remapping of these responses following hand displacement, with a generalization to both types of CS. Experiment II corroborated and further extended our findings by ruling out the novelty of the experimental context as a driving factor of such modulations. Indeed, fear responses were present only for stimuli within the PPS but not for new stimuli displayed outside the PPS. By revealing a hand-centered (re)mapping of the conditioning effect, these findings indicate that associative learning can arise in hand-centered coordinates. They further suggest that the threatening valence of an object also depends on its basic spatial relationship with our body.NEW & NOTEWORTHY Associative fear learning takes place in hand-centered coordinates. Using a Pavlovian fear-learning paradigm, we show that the anticipatory skin conductance response indicating the association between the negative value and an initially neutral stimulus is acquired and then remapped in space when the stimulated body part moves to a different position. These results demonstrate the relationship between the representation of peripersonal space and the encoding of threatening stimuli. Hypotheses concerning the underlying neural network are discussed.


Asunto(s)
Aprendizaje por Asociación , Miedo , Mano/fisiología , Espacio Personal , Aprendizaje Espacial , Adulto , Condicionamiento Clásico , Femenino , Humanos , Masculino , Movimiento
19.
Cogn Affect Behav Neurosci ; 21(1): 1-13, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420710

RESUMEN

Overgeneralized fear (OGF), or indiscriminate fear responses to signals of threat and nonthreat, is a well-studied cognitive mechanism in human anxiety. Anxiety-related OGF has been studied primarily through fear-learning paradigms and conceptualized as overly exaggerated learning of cues signaling imminent threat. However, the role of safety learning in OGF has not only received much less empirical attention but has been fundamentally conceptualized as learning about the absence of threat rather than the presence of safety. As a result, the relative contributions of exaggerated fear learning and weakened safety learning to anxiety-related OGF remain poorly understood, as do the potentially unique biological and behavioral underpinnings of safety learning. The present review outlines these gaps by, first, summarizing animal and human research on safety learning related to anxiety and OGF. Second, we outline innovations in methods to tease apart unique biological and behavioral contributions of safety learning to OGF. Lastly, we describe clinical and treatment implications of this framework for translational research relevant to human anxiety.


Asunto(s)
Condicionamiento Clásico , Investigación Biomédica Traslacional , Animales , Ansiedad , Trastornos de Ansiedad , Miedo , Humanos
20.
Neurobiol Learn Mem ; 180: 107413, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609741

RESUMEN

Rapid Eye Movement (REM) sleep has been shown to modulate the consolidation of fear memories, a process that may contribute to the development of Post-Traumatic Stress Disorder (PTSD). However, contradictory findings have been reported regarding the direction of this modulation and its differential effects on recall versus generalization. In two complementary experiments, we addressed this by employing sleep deprivation protocols together with a novel fear-conditioning paradigm that required the discrimination between coexisting threat and safety signals. Using skin conductance responses and functional imaging (fMRI), we found two opposing effects of REM sleep: While REM impaired recall of the original threat memories, it improved the ability to generalize these memories to novel situations that emphasized the discrimination between threat and safety signals. These results, as well as previous findings in healthy participants and patients diagnosed with PTSD, could be explained by the degree to which the balance between threat and safety signals for a given stimulus was predictive of threat. We suggest that this account can be integrated with contemporary theories of sleep and fear learning, such as the REM recalibration hypothesis.


Asunto(s)
Encéfalo/diagnóstico por imagen , Miedo , Generalización Psicológica/fisiología , Recuerdo Mental/fisiología , Privación de Sueño/fisiopatología , Sueño REM/fisiología , Encéfalo/fisiopatología , Femenino , Neuroimagen Funcional , Respuesta Galvánica de la Piel , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Polisomnografía , Sueño , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA