Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 68(29): 7571-7580, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32657588

RESUMEN

Phosphorus (P) is increasingly being applied in concentrated bands to satisfy plant nutrient requirements. To quantify changes in plant-available P in the fertosphere of highly concentrated fertilizer bands, we conducted a soil-fertilizer incubation experiment using seven soil types, three highly water-soluble P sources [monocalcium phosphate (MCP), monoammonium phosphate (MAP), and diammonium phosphate (DAP)], and coapplication of potassium chloride (KCl). First, we found that soil properties were important in influencing P availability. For a calcareous soil, availability was generally low irrespective of treatment, presumably due to precipitation of the fertilizer as Ca-P minerals. For all six noncalcareous soils, fertosphere pH was critical in determining potential P availability, with decreasing pH values decreasing availability, presumably due to precipitation of Al- and Fe-P minerals. Second, given the importance of pH, we also found that the form of P supplied (MCP, MAP, or DAP) had a pronounced effect on P availability due to associated changes in fertosphere pH. Finally, we also found that the coapplication of K also decreased P availability in some soils. We conclude that the selection of the P source is of utmost importance when fertilizers are placed as highly concentrated bands and that soil properties also need to be considered.


Asunto(s)
Fertilizantes/análisis , Fósforo/metabolismo , Potasio/metabolismo , Suelo/química , Triticum/metabolismo , Fósforo/química , Potasio/química , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA