Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cachexia Sarcopenia Muscle ; 15(3): 1016-1029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649783

RESUMEN

BACKGROUND: Skeletal muscle dysfunction is a common extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD). Alterations in skeletal muscle myosin heavy chain expression, with reduced type I and increased type II myosin heavy chain expression, are associated with COPD severity when studied in largely male cohorts. The objectives of this study were (1) to define an abnormal myofibre proportion phenotype in both males and females with COPD and (2) to identify transcripts and transcriptional networks associated with abnormal myofibre proportion in COPD. METHODS: Forty-six participants with COPD were assessed for body composition, strength, endurance and pulmonary function. Skeletal muscle biopsies from the vastus lateralis were assayed for fibre-type distribution and cross-sectional area via immunofluorescence microscopy and RNA-sequenced to generate transcriptome-wide gene expression data. Sex-stratified k-means clustering of type I and IIx/IIax fibre proportions was used to define abnormal myofibre proportion in participants with COPD and contrasted with previously defined criteria. Single transcripts and weighted co-expression network analysis modules were tested for correlation with the abnormal myofibre proportion phenotype. RESULTS: Abnormal myofibre proportion was defined in males with COPD (n = 29) as <18% type I and/or >22% type IIx/IIax fibres and in females with COPD (n = 17) as <36% type I and/or >12% type IIx/IIax fibres. Half of the participants with COPD were classified as having an abnormal myofibre proportion. Participants with COPD and an abnormal myofibre proportion had lower median handgrip strength (26.1 vs. 34.0 kg, P = 0.022), 6-min walk distance (300 vs. 353 m, P = 0.039) and forced expiratory volume in 1 s-to-forced vital capacity ratio (0.42 vs. 0.48, P = 0.041) compared with participants with COPD and normal myofibre proportions. Twenty-nine transcripts were associated with abnormal myofibre proportions in participants with COPD, with the upregulated NEB, TPM1 and TPM2 genes having the largest fold differences. Co-expression network analysis revealed that two transcript modules were significantly positively associated with the presence of abnormal myofibre proportions. One of these co-expression modules contained genes classically associated with muscle atrophy, as well as transcripts associated with both type I and type II myofibres, and was enriched for genetic loci associated with bone mineral density. CONCLUSIONS: Our findings indicate that there are significant transcriptional alterations associated with abnormal myofibre proportions in participants with COPD. Transcripts canonically associated with both type I and type IIa fibres were enriched in a co-expression network associated with abnormal myofibre proportion, suggesting altered transcriptional regulation across multiple fibre types.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Transcriptoma , Perfilación de la Expresión Génica
2.
J Cachexia Sarcopenia Muscle ; 15(4): 1309-1323, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38764311

RESUMEN

BACKGROUND: The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS: Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS: SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS: Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.


Asunto(s)
Fibrosis , Atrofia Muscular , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Ratas , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Atrofia Muscular/genética , Masculino , Transcriptoma , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA