Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.023
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32442406

RESUMEN

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Asunto(s)
Desmidiales/genética , Desmidiales/metabolismo , Embryophyta/genética , Evolución Biológica , Pared Celular/genética , Pared Celular/metabolismo , Ecosistema , Evolución Molecular , Filogenia , Plantas
2.
Plant J ; 118(2): 488-505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173092

RESUMEN

Phanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.


Asunto(s)
Genoma de Planta , Genómica , Haplotipos , Análisis de Secuencia de ADN , Genoma de Planta/genética , Flavonoides/genética
3.
Plant J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943631

RESUMEN

Cold and saline-alkali stress are frequently encountered by plants, and they often occur simultaneously in saline-alkali soils at mid to high latitudes, constraining forage crop distribution and production. However, the mechanisms by which forage crops respond to the combination of cold and saline-alkali stress remain unknown. Alfalfa (Medicago sativa L.) is one of the most essential forage grasses in the world. In this study, we analyzed the complex response mechanisms of two alfalfa species (Zhaodong [ZD] and Blue Moon [BM]) to combined cold and saline-alkali stress using multi-omics. The results revealed that ZD had a greater ability to tolerate combined stress than BM. The tricarboxylic acid cycles of the two varieties responded positively to the combined stress, with ZD accumulating more sugars, amino acids, and jasmonic acid. The gene expression and flavonoid content of the flavonoid biosynthesis pathway were significantly different between the two varieties. Weighted gene co-expression network analysis and co-expression network analysis based on RNA-Seq data suggested that the MsMYB12 gene may respond to combined stress by regulating the flavonoid biosynthesis pathway. MsMYB12 can directly bind to the promoter of MsFLS13 and promote its expression. Moreover, MsFLS13 overexpression can enhance flavonol accumulation and antioxidant capacity, which can improve combined stress tolerance. These findings provide new insights into improving alfalfa resistance to combined cold and saline-alkali stress, showing that flavonoids are essential for plant resistance to combined stresses, and provide theoretical guidance for future breeding programs.

4.
Plant J ; 119(1): 176-196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38575203

RESUMEN

4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.


Asunto(s)
Flavonoides , Glicósidos , Nicotiana , Proteínas de Plantas , Raíces de Plantas , Flavonoides/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Glicósidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética
5.
Cancer Metastasis Rev ; 43(1): 87-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37789138

RESUMEN

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Plasticidad de la Célula , Transducción de Señal , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
6.
Med Res Rev ; 44(2): 497-538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37602483

RESUMEN

Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.


Asunto(s)
Artritis Reumatoide , Flavonoides , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Inflamación
7.
J Biol Chem ; 299(12): 105421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923139

RESUMEN

The two-spotted spider mite, Tetranychus urticae, is a major cosmopolitan pest that feeds on more than 1100 plant species. Its genome contains an unprecedentedly large number of genes involved in detoxifying and transporting xenobiotics, including 80 genes that code for UDP glycosyltransferases (UGTs). These enzymes were acquired via horizontal gene transfer from bacteria after loss in the Chelicerata lineage. UGTs are well-known for their role in phase II metabolism; however, their contribution to host adaptation and acaricide resistance in arthropods, such as T. urticae, is not yet resolved. TuUGT202A2 (Tetur22g00270) has been linked to the ability of this pest to adapt to tomato plants. Moreover, it was shown that this enzyme can glycosylate a wide range of flavonoids. To understand this relationship at the molecular level, structural, functional, and computational studies were performed. Structural studies provided specific snapshots of the enzyme in different catalytically relevant stages. The crystal structure of TuUGT202A2 in complex with UDP-glucose was obtained and site-directed mutagenesis paired with molecular dynamic simulations revealed a novel lid-like mechanism involved in the binding of the activated sugar donor. Two additional TuUGT202A2 crystal complexes, UDP-(S)-naringenin and UDP-naringin, demonstrated that this enzyme has a highly plastic and open-ended acceptor-binding site. Overall, this work reveals the molecular basis of substrate promiscuity of TuUGT202A2 and provides novel insights into the structural mechanism of UGTs catalysis.


Asunto(s)
Glicosiltransferasas , Tetranychidae , Genoma , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Plantas/parasitología , Uridina Difosfato , Especificidad por Sustrato , Tetranychidae/enzimología , Tetranychidae/genética
8.
Plant J ; 114(3): 534-553, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790349

RESUMEN

Due to global warming and the increase in nitrogen oxide emissions, plants experience drought and nitrogen (N) deposition. However, little is known about the acclimation to drought and N deposition of Salix species, which are dioecious woody plants. Here, an investigation into foliar N deposition combined with drought was conducted by assessing integrated phenotypes, phytohormones, transcriptomics, and metabolomics of male and female Salix rehderiana. The results indicated that there was greater transcriptional regulation in males than in females. Foliar N deposition induced an increase in foliar abscisic acid (ABA) levels in males, resulting in the inhibition of stomatal conductance, photosynthesis, carbon (C) and N accumulation, and growth, whereas more N was assimilated in females. Growth as well as C and N accumulation in drought-stressed S. rehderiana females increased after N deposition. Interestingly, drought decreased flavonoid biosynthesis whereas N deposition increased it in females. Both drought and N deposition increased flavonoid methylation in males and glycosylation in females. However, in drought-exposed S. rehderiana, N deposition increased the biosynthesis and glycosylation of flavonoids in females but decreased glycosylation in males. Therefore, foliar N deposition affects the growth and drought tolerance of S. rehderiana by altering the foliar ABA levels and the biosynthesis and modification of flavonoids. This work provides a basis for understanding how S. rehderiana may acclimate to N deposition and drought in the future.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Salix , Sequías , Nitrógeno , Caracteres Sexuales , Ácido Abscísico/metabolismo , Flavonoides
9.
Plant J ; 115(6): 1746-1757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37326247

RESUMEN

3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Botrytis/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Mol Plant Microbe Interact ; 37(3): 232-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240672

RESUMEN

Flavonoids are major plant secondary metabolites that provide defense against several insect pests. Previously, it has been shown that sorghum (Sorghum bicolor) flavonoids are required for providing resistance to fall armyworm (FAW; Spodoptera frugiperda), which is an important chewing insect pest on several crops. We demonstrate here the role of FAW oral cues in modulating sorghum flavonoid defenses. While feeding, chewing insects release two kinds of oral cues: oral secretions (OS)/regurgitant and saliva. Our results indicate that FAW OS induced the expression of genes related to flavonoid biosynthesis and total flavonoids, thereby enhancing sorghum's defense against FAW larvae. Conversely, FAW saliva suppressed the flavonoid-based defenses and promoted FAW caterpillar growth, independent of the FAW salivary component, glucose oxidase (GOX). Thus, we infer that different oral cues in FAW may have contrasting roles in altering sorghum defenses. These findings expand our understanding of the precise modes of action of caterpillar oral cues in modulating plant defenses and help in designing novel pest management strategies against FAW in this vital cereal crop. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Saliva , Sorghum , Animales , Spodoptera , Herbivoria , Grano Comestible , Larva , Zea mays/genética , Flavonoides
11.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38443859

RESUMEN

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Asunto(s)
Dioscorea , Dioscorea/genética , Fitomejoramiento , Genómica , Fenotipo , Almidón
12.
J Neurochem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383146

RESUMEN

Arising out of a PhD project more than 50 years ago to synthesise analogues of the neurotransmitter GABA, a series of new chemical entities were found to have selective actions on ionotropic GABA receptors. Several of these neurochemicals are now commercially available. A new subtype of these receptors was discovered that could be a target for the treatment of myopia, the facilitation of learning and memory, and the improvement of post-stroke motor recovery. The development of these new chemical entities over many years demonstrates the importance of neurochemicals with which to investigate selective aspects of GABA receptors and illustrates the significance of collaboration between chemists and biologists in neurochemistry. Vital were the improvements in synthetic organic chemistry and the use of functional human receptors expressed in oocytes. Current interest in ionotropic GABA receptors includes the clinical development of subtype-specific agents and the role of gain-of-function receptor variants in epilepsy. Dietary flavonoids were found to cross the blood-brain barrier to influence brain function. Natural and synthetic flavonoids had a range of effects on GABA receptors, ranging from positive, silent, and negative allosteric modulators, to even second-order modulation of first-order modulators. Flavonoids have been called "a new family of benzodiazepines." Like benzodiazepines, flavonoids reduce stress. Stress produces changes in GABA receptors in the brain that may be because of changes in endogenous modulators, such as neurosteroids and corticosteroids. GABA also occurs naturally in the diet leading to studies of the effects of oral GABA on brain function. This finding has resulted in studies of GABA and related neurochemicals as neuro-nutraceuticals. GABA systems in the gut microbiome are essential to such studies. The actions of oral GABA and of GABA-enriched beverages and foodstuffs are now an area of considerable scientific and commercial interest. GABA is a deceptively simple chemical that can take up many shapes, which may underlie its complex functions. The need for new chemical entities with selective actions for further studies highlights the need for continuing collaboration between chemists and biologists.

13.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36718535

RESUMEN

The genetic basis of phenotypic variation is a long-standing concern of evolutionary biology. Coloration has proven to be a visual, easily quantifiable, and highly tractable system for genetic analysis and is an ever-evolving focus of biological research. Compared with the homogenized brown-yellow cocoons of wild silkworms, the cocoons of domestic silkworms are spectacularly diverse in color, such as white, green, and yellow-red; this provides an outstanding model for exploring the phenotypic diversification and biological coloration. Herein, the molecular mechanism underlying silkworm green cocoon formation was investigated, which was not fully understood. We demonstrated that five of the seven members of a sugar transporter gene cluster were specifically duplicated in the Bombycidae and evolved new spatial expression patterns predominantly expressed in silk glands, accompanying complementary temporal expression; they synergistically facilitate the uptake of flavonoids, thus determining the green cocoon. Subsequently, polymorphic cocoon coloring landscape involving multiple loci and the evolution of cocoon color from wild to domestic silkworms were analyzed based on the pan-genome sequencing data. It was found that cocoon coloration involved epistatic interaction between loci; all the identified cocoon color-related loci existed in wild silkworms; the genetic segregation, recombination, and variation of these loci shaped the multicolored cocoons of domestic silkworms. This study revealed a new mechanism for flavonoids-based biological coloration that highlights the crucial role of gene duplication followed by functional diversification in acquiring new genetic functions; furthermore, the results in this work provide insight into phenotypic innovation during domestication.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Seda/genética , Seda/metabolismo , Secuencia de Bases , Flavonoides/metabolismo
14.
Curr Issues Mol Biol ; 46(4): 2884-2925, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666911

RESUMEN

At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.

15.
Curr Issues Mol Biol ; 46(6): 5131-5146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920980

RESUMEN

Hyperlipidemia is a prevalent chronic metabolic disease that severely affects human health. Currently, commonly used clinical therapeutic drugs are prone to drug dependence and toxic side effects. Dietary intervention for treating chronic metabolic diseases has received widespread attention. Rosa sterilis is a characteristic fruit tree in China whose fruits are rich in flavonoids, which have been shown to have a therapeutic effect on hyperlipidemia; however, their exact molecular mechanism of action remains unclear. Therefore, this study aimed to investigate the therapeutic effects of R. sterilis total flavonoid extract (RS) on hyperlipidemia and its possible mechanisms. A hyperlipidemic zebrafish model was established using egg yolk powder and then treated with RS to observe changes in the integral optical density in the tail vessels. Network pharmacology and molecular docking were used to investigate the potential mechanism of action of RS for the treatment of hyperlipidemia. The results showed that RS exhibited favorable hypolipidemic effects on zebrafish in the concentration range of 3.0-30.0 µg/mL in a dose-dependent manner. Topological and molecular docking analyses identified HSP90AA1, PPARA, and MMP9 as key targets for hypolipidemic effects, which were exerted mainly through lipolytic regulation of adipocytes and lipids; pathway analysis revealed enrichment in atherosclerosis, chemical carcinogenic-receptor activation pathways in cancers, and proteoglycans in prostate cancer and other cancers. Mover, chinensinaphthol possessed higher content and better target binding ability, which suggested that chinensinaphthol might be an important component of RS with hypolipidemic active function. These findings provide a direction for further research on RS interventions for the treatment of hyperlipidemia.

16.
Plant Cell Physiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625713

RESUMEN

Altitude is an important ecological factor affecting plant physiology and ecology, material metabolism and gene expression. Tuber color changes were observed in purple and red potatoes growing at four different elevations ranging from 1800±50 to 3300±50 meters in the Tiger Leaping Gorge area of Yunnan Province. The results showed that the TPC, TFC, TAC and biological yield of anthocyanin increased with increasing altitude until 2800 ± 50 m, and the highest anthocyanin contents were detected in the purple potato Huaxinyangyu and the red potato Jianchuanhong at the flowering stage and budding stage, respectively. Combined transcriptomic and metabolomic analyses revealed that the content and diversity of flavonoids are associated with gene expression via the promotion of propane metabolism to improve potato adaptation to different altitudes. These results provide a foundation for understanding the coloring mechanism and creating new potato germplasms with high resistance and good quality via genetic manipulation.

17.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865809

RESUMEN

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Asunto(s)
Flavonas , Hiperalgesia , Neuralgia , Ratas Sprague-Dawley , Animales , Ratas , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Flavonas/farmacología , Flavonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Gabapentina/farmacología , Gabapentina/uso terapéutico , Nocicepción/efectos de los fármacos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Femenino , Ácido gamma-Aminobutírico/metabolismo , Aminas/farmacología , Aminas/uso terapéutico , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Vulvodinia/tratamiento farmacológico , Constricción , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico
18.
BMC Plant Biol ; 24(1): 442, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778262

RESUMEN

The popular leafy vegetable lettuce (Lactuca sativa L.) is susceptible to cold stress during the growing season, which slows growth rate, causes leaf yellowing and necrosis, and reduced yield and quality. In this study, transcriptomic and metabolomic analyses of two cold-resistant lettuce cultivars (GWAS-W42 and F11) and two cold-sensitive lettuce cultivars (S13K079 and S15K058) were performed to identify the mechanisms involved in the cold response of lettuce. Overall, transcriptome analysis identified 605 differentially expressed genes (DEGs), including significant enrichment of genes involved in the flavonoid and flavonol (CHS, CHI, F3H, FLS, CYP75B1, HCT, etc.) biosynthetic pathways related to oxidation-reduction and catalytic activity. Untargeted metabolomic analysis identified fifteen flavonoid metabolites and 28 other metabolites potentially involved in the response to cold stress; genistein, quercitrin, quercetin derivatives, kaempferol derivatives, luteolin derivatives, apigenin and their derivatives accumulate at higher levels in cold-resistant cultivars. Moreover, MYBs, bHLHs, WRKYs and Dofs also play positive role in the low temperature response, which affected the expression of structural genes contributing to the variation of metabolites between the resistant and sensitive. These results provide valuable evidence that the metabolites and genes involved in the flavonoid biosynthetic pathway play important roles in the response of lettuce to cold stress.


Asunto(s)
Lactuca , Metabolómica , Transcriptoma , Lactuca/genética , Lactuca/metabolismo , Lactuca/fisiología , Perfilación de la Expresión Génica , Frío , Metaboloma , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque por Frío/genética , Flavonoides/metabolismo
19.
BMC Plant Biol ; 24(1): 132, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383312

RESUMEN

Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.


Asunto(s)
Morus , Transcriptoma , Morus/genética , Morus/metabolismo , Germinación/genética , Cloruro de Sodio/metabolismo , Semillas/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Oxidorreductasas/metabolismo , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas
20.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605293

RESUMEN

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerancia a la Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte Iónico , Carbono/metabolismo , Suelo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA