Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.202
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518562

RESUMEN

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Barrera Hematoencefálica , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364105

RESUMEN

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo
3.
Annu Rev Physiol ; 84: 209-227, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35143330

RESUMEN

Noncommunicable diseases are chronic diseases that contribute to death worldwide, but these diseases can be prevented and mitigated with regular exercise. Exercise activates signaling molecules and the transcriptional network to promote physiological adaptations, such as fiber type transformation, angiogenesis, and mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is a master regulator that senses the energy state, promotes metabolism for glucose and fatty acid utilization, and mediates beneficial cellular adaptations in many vital tissues and organs. This review focuses on the current, integrative understanding of the role of exercise-induced activation of AMPK in the regulation of system metabolism and promotion of health benefits.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ejercicio Físico , Proteínas Quinasas Activadas por AMP/metabolismo , Adaptación Fisiológica/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Glucosa/metabolismo , Humanos , Músculo Esquelético/metabolismo , Transducción de Señal
4.
J Biol Chem ; 300(3): 105679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272219

RESUMEN

Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Butanonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Humanos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
5.
Am J Physiol Cell Physiol ; 326(6): C1710-C1720, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708524

RESUMEN

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two ß-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-ß-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.


Asunto(s)
Ácido 3-Hidroxibutírico , Acetoacetatos , Glucosa , Insulina , Fibras Musculares Esqueléticas , Acetoacetatos/metabolismo , Acetoacetatos/farmacología , Animales , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Línea Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Ratas , Cuerpos Cetónicos/metabolismo , Ratones
6.
Am J Physiol Cell Physiol ; 327(5): C1219-C1235, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250818

RESUMEN

Skeletal muscle is one of the predominant sites involved in glucose disposal, accounting for ∼80% of postprandial glucose uptake, and plays a critical role in maintaining glycemic homeostasis. Dysregulation of energy metabolism in skeletal muscle is involved in developing insulin resistance and type 2 diabetes (T2D). Transcriptomic responses of skeletal muscle to exercise found that the expression of Klf3 was increased in T2D Goto-Kakizaki (GK) rats and decreased after exercise with improved hyperglycemia and insulin resistance, implying that Klf3 might be associated with insulin sensitivity and glucose metabolism. We also found that knockdown of Klf3 promoted basal and insulin-stimulated glucose uptake in L6 myotubes, whereas overexpression of Klf3 resulted in the opposite. Through pairwise comparisons of L6 myotubes transcriptome, we identified 2,256 and 1,988 differentially expressed genes in Klf3 knockdown and overexpression groups, respectively. In insulin signaling, the expression of Slc2a4, Akt2, Insr, and Sorbs1 was significantly increased by Klf3 knockdown and decreased with Klf3 overexpression; Ptprf and Fasn were markedly downregulated in Klf3 reduced group and upregulated in Klf3 overexpressed group. Moreover, downregulation of Klf3 promoted the expression of glucose transporter 4 (GLUT4) and protein kinase B (AKT) proteins, as well as the translocation of GLUT4 to the cell membrane in the basal situation, and enhanced insulin sensitivity, characterized by increased insulin-stimulated GLUT4 translocation and AKT, TBC1 domain family member 1 (TBC1D1) and TBC1 domain family member 4 (TBC1D4) phosphorylation, whereas overexpression of Klf3 showed contrary results. These results suggest that Klf3 affects glucose uptake and insulin sensitivity via insulin signal transduction and intracellular metabolism, offering a novel potential treatment strategy for T2D.NEW & NOTEWORTHY The knockdown of Klf3 increased glucose uptake and improved insulin sensitivity in L6 myotubes, whereas its overexpression had the opposite effect. To explore the underlying mechanisms, we evaluated the transcriptional profiles of L6 myotubes after Klf3 knockdown and overexpression and revealed that metabolism and insulin-related pathways were significantly impacted. Klf3 also influenced the expression or modification of glucose transporter 4 (GLUT4), protein kinase B (AKT), TBC1 domain family member 1 (TBC1D1), and TBC1 domain family member 4 (TBC1D4) in the insulin signaling pathway, affecting insulin sensitivity and glucose uptake.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Resistencia a la Insulina , Factores de Transcripción de Tipo Kruppel , Músculo Esquelético , Animales , Masculino , Ratas , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Insulina/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
7.
Diabetologia ; 67(1): 137-155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37843554

RESUMEN

AIMS/HYPOTHESIS: Recovering functional beta cell mass is a promising approach for future diabetes therapies. The aim of the present study is to investigate the effects of adjudin, a small molecule identified in a beta cell screen using zebrafish, on pancreatic beta cells and diabetes conditions in mice and human spheroids. METHODS: In zebrafish, insulin expression was examined by bioluminescence and quantitative real-time PCR (qPCR), glucose levels were examined by direct measurements and distribution using a fluorescent glucose analogue, and calcium activity in beta cells was analysed by in vivo live imaging. Pancreatic islets of wild-type postnatal day 0 (P0) and 3-month-old (adult) mice, as well as adult db/db mice (i.e. BKS(D)-Leprdb/JOrlRj), were cultured in vitro and analysed by qPCR, glucose stimulated insulin secretion and whole mount staining. RNA-seq was performed for islets of P0 and db/db mice. For in vivo assessment, db/db mice were treated with adjudin and subjected to analysis of metabolic variables and islet cells. Glucose consumption was examined in primary human hepatocyte spheroids. RESULTS: Adjudin treatment increased insulin expression and calcium response to glucose in beta cells and decreased glucose levels after beta cell ablation in zebrafish. Adjudin led to improved beta cell function, decreased beta cell proliferation and glucose responsive insulin secretion by decreasing basal insulin secretion in in vitro cultured newborn mouse islets. RNA-seq of P0 islets indicated that adjudin treatment resulted in increased glucose metabolism and mitochondrial function, as well as downstream signalling pathways involved in insulin secretion. In islets from db/db mice cultured in vitro, adjudin treatment strengthened beta cell identity and insulin secretion. RNA-seq of db/db islets indicated adjudin-upregulated genes associated with insulin secretion, membrane ion channel activity and exocytosis. Moreover, adjudin promoted glucose uptake in the liver of zebrafish in an insulin-independent manner, and similarly promoted glucose consumption in primary human hepatocyte spheroids with insulin resistance. In vivo studies using db/db mice revealed reduced nonfasting blood glucose, improved glucose tolerance and strengthened beta cell identity after adjudin treatment. CONCLUSIONS/INTERPRETATION: Adjudin promoted functional maturation of immature islets, improved function of dysfunctional islets, stimulated glucose uptake in liver and improved glucose homeostasis in db/db mice. Thus, the multifunctional drug adjudin, previously studied in various contexts and conditions, also shows promise in the management of diabetic states. DATA AVAILABILITY: Raw and processed RNA-seq data for this study have been deposited in the Gene Expression Omnibus under accession number GSE235398 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235398 ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Recién Nacido , Pez Cebra , Diabetes Mellitus Tipo 2/metabolismo , Calcio/metabolismo , Islotes Pancreáticos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Homeostasis , Hígado/metabolismo
8.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38099962

RESUMEN

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Glucemia/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Fluorodesoxiglucosa F18/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografía de Emisión de Positrones , Glucosa/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Insulina/metabolismo
9.
J Biol Chem ; 299(3): 102994, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773802

RESUMEN

Nitric oxide (NO) plays a dual role in regulating DNA damage response (DDR) signaling in pancreatic ß-cells. As a genotoxic agent, NO activates two types of DDR signaling; however, when produced at micromolar levels by the inducible isoform of NO synthase, NO inhibits DDR signaling and DDR-induced apoptosis in a ß-cell-selective manner. DDR signaling inhibition by NO correlates with mitochondrial oxidative metabolism inhibition and decreases in ATP and NAD+. Unlike most cell types, ß-cells do not compensate for impaired mitochondrial oxidation by increasing glycolytic flux, and this metabolic inflexibility leads to a decrease in ATP and NAD+. Here, we used multiple analytical approaches to determine changes in intermediary metabolites in ß-cells and non-ß-cells treated with NO or complex I inhibitor rotenone. In addition to ATP and NAD+, glycolytic and tricarboxylic acid cycle intermediates as well as NADPH are significantly decreased in ß-cells treated with NO or rotenone. Consistent with glucose-6-phosphate residing at the metabolic branchpoint for glycolysis and the pentose phosphate pathway (NADPH), we show that mitochondrial oxidation inhibitors limit glucose uptake in a ß-cell-selective manner. Our findings indicate that the ß-cell-selective inhibition of DDR signaling by NO is associated with a decrease in ATP to levels that fall significantly below the KM for ATP of glucokinase (glucose uptake) and suggest that this action places the ß-cell in a state of suspended animation where it is metabolically inert until NO is removed, and metabolic function can be restored.


Asunto(s)
NAD , Óxido Nítrico , Óxido Nítrico/metabolismo , NADP/metabolismo , NAD/metabolismo , Rotenona/farmacología , Daño del ADN , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo
10.
J Biol Chem ; 299(6): 104795, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150320

RESUMEN

In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate production despite normal oxygen levels and functional mitochondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is independent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immunoprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.


Asunto(s)
Adipocitos , Factores de Transcripción Forkhead , Glucólisis , Células Musculares , Factores de Transcripción , Animales , Ratones , Adipocitos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Ácido Láctico/metabolismo , Células Musculares/metabolismo , Piruvatos , Factores de Transcripción/metabolismo , Ratas , Línea Celular , Transcriptoma
11.
J Cell Physiol ; 239(2): e31173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214103

RESUMEN

Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.


Asunto(s)
Adipogénesis , Insulina , Transducción de Señal , Animales , Ratones , Células 3T3-L1 , Adipogénesis/genética , Adiponectina/genética , Adiponectina/metabolismo , Diferenciación Celular , Regulación hacia Abajo , Glucosa/metabolismo , Insulina/metabolismo , Lípidos , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , PPAR gamma/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
12.
Am J Physiol Endocrinol Metab ; 327(4): E449-E458, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140973

RESUMEN

Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.NEW & NOTEWORTHY Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.


Asunto(s)
Dieta Cetogénica , Aceites de Pescado , Homeostasis , Insulina , Músculo Esquelético , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Aceites de Pescado/farmacología , Aceites de Pescado/administración & dosificación , Insulina/metabolismo , Insulina/sangre , Glucemia/metabolismo , Ácidos Grasos Omega-3/farmacología , Resistencia a la Insulina , Glucosa/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-39441242

RESUMEN

Microvascular insulin delivery to myocytes is rate limiting for the onset of insulin-stimulated muscle glucose uptake. The structural integrity of capillaries of the microvasculature is regulated, in part, by a family of transmembrane adhesion receptors known as integrins, which are composed of an α and ß subunit. The integrin ß1 (itgb1) subunit is highly expressed in endothelial cells (EC). EC itgb1 is necessary for the formation of capillary networks during embryonic during development and its knockdown blunts the reactive hyperemia that manifests during ischemia reperfusion. We investigated the contribution of EC itgb1 in microcirculatory function and glucose uptake with emphasis in skeletal muscle. We hypothesized that loss of EC itgb1 would impair microvascular hemodynamics and glucose uptake during insulin stimulation, creating 'delivery'-mediated insulin resistance. An itgß1 knockdown mouse model was developed to avoid lethality of embryonic gene knockout and the deteriorating health resulting from early post-natal inducible gene deletion. Mice with (itgb1fl/flSCLcre) and without (itgb1fl/fl) tamoxifen inducible stem cell leukemia cre recombinase (SLCcre) expression at 10 days post cre induction had comparable exercise tolerance and pulmonary and cardiac functions. Using robust in vivo experimental platforms (i.e., intravital microscopy and hyperinsulinemic-euglycemic clamp), we show that itgb1fl/flSCLcre mice compared to itgb1fl/fl littermates have, i) deficits in capillary flow rate, flow heterogeneity, and capillary density; ii) impaired insulin-stimulated glucose uptake despite sufficient transcapillary insulin efflux; and iii) reduced insulin-stimulated glucose uptake due to perfusion-limited glucose delivery. Thus, EC itgb1 is necessary for microcirculatory function and to meet the metabolic challenge of insulin stimulation.

14.
Am J Physiol Endocrinol Metab ; 326(6): E776-E790, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568153

RESUMEN

Obesity has become a major risk of global public health. SMEK1 is also known as a regulatory subunit of protein phosphatase 4 (PP4). Both PP4 and SMEK1 have been clarified in many metabolic functions, including the regulation of hepatic gluconeogenesis and glucose transporter gene expression in yeast. Whether SMEK1 participates in obesity and the broader metabolic role in mammals is unknown. Thus, we investigated the function of SMEK1 in white adipose tissue and glucose uptake. GWAS/GEPIA/GEO database was used to analyze the correlation between SMEK1 and metabolic phenotypes/lipid metabolism-related genes/obesity. Smek1 KO mice were generated to identify the role of SMEK1 in obesity and glucose homeostasis. Cell culture and differentiation of stromal-vascular fractions (SVFs) and 3T3-L1 were used to determine the mechanism. 2-NBDG was used to measure the glucose uptake. Compound C was used to confirm the role of AMPK. We elucidated that SMEK1 was correlated with obesity and adipogenesis. Smek1 deletion enhanced adipogenesis in both SVFs and 3T3-L1. Smek1 KO protected mice from obesity and had protective effects on metabolic disorders, including insulin resistance and inflammation. Smek1 KO mice had lower levels of fasting serum glucose. We found that SMEK1 ablation promoted glucose uptake by increasing p-AMPKα(T172) and the transcription of Glut4 when the effect on AMPK-regulated glucose uptake was due to the PP4 catalytic subunits (PPP4C). Our findings reveal a novel role of SMEK1 in obesity and glucose homeostasis, providing a potential new therapeutic target for obesity and metabolic dysfunction.NEW & NOTEWORTHY Our study clarified the relationship between SMEK1 and obesity for the first time and validated the conclusion in multiple ways by combining available data from public databases, human samples, and animal models. In addition, we clarified the role of SMEK1 in glucose uptake, providing an in-depth interpretation for the study of its function in glucose metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipogénesis , Glucosa , Ratones Noqueados , Obesidad , Transducción de Señal , Animales , Masculino , Ratones , Células 3T3-L1 , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Glucosa/metabolismo , Resistencia a la Insulina , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/etiología , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/genética , Fosfoproteínas Fosfatasas
15.
Am J Physiol Endocrinol Metab ; 327(5): E655-E667, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39259163

RESUMEN

The second-meal phenomenon refers to the improvement in glucose tolerance seen following a second identical meal. We previously showed that 4 h of morning hyperinsulinemia, but not hyperglycemia, enhanced hepatic glucose uptake (HGU) and glycogen storage during an afternoon hyperinsulinemic-hyperglycemic (HIHG) clamp. Our current aim was to determine if the duration or pattern of morning hyperinsulinemia is important for the afternoon response to a HIHG clamp. To determine this, the same total amount of insulin was administered either over 2 h in the first (Ins2h-A) or second (Ins2h-B) half of the morning or over the entire 4 h (Ins4h) of the morning. In the 4-h afternoon period, all three groups had 4x-basal insulin, 2x-basal glycemia, and portal glucose infusion to expose the liver to the primary postprandial regulators of hepatic glucose metabolism. During the afternoon clamp, there was a marked increase in HGU and hepatic glycogen synthesis in the Ins4h group compared with the Ins2h-A and Ins2h-B groups, despite matched hepatic glucose loads and total insulin infusion rates. Thus, the longer duration (Ins4h) of lower hyperinsulinemia in the morning seems to be the key to much greater liver glucose uptake during the afternoon clamp.NEW & NOTEWORTHY Morning insulin exposure primes the liver for increased hepatic glucose uptake and glycogen storage during a subsequent hyperinsulinemic-hyperglycemic clamp. This study addressed whether the pattern and/or duration of insulin delivery in the morning influences insulin's ensuing priming effect. We found that despite receiving equal total doses of insulin in the morning, a prolonged, lower rate of morning insulin delivery improved afternoon liver glucose metabolism more effectively than a shorter, higher rate of delivery.


Asunto(s)
Técnica de Clampeo de la Glucosa , Glucosa , Hiperinsulinismo , Insulina , Hígado , Hiperinsulinismo/metabolismo , Hígado/metabolismo , Masculino , Insulina/metabolismo , Insulina/administración & dosificación , Glucosa/metabolismo , Animales , Glucemia/metabolismo , Glucógeno/metabolismo , Factores de Tiempo , Periodo Posprandial/fisiología , Ratas , Hiperglucemia/metabolismo , Ritmo Circadiano/fisiología , Comidas , Ratas Sprague-Dawley
16.
Biochem Biophys Res Commun ; 705: 149742, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38460438

RESUMEN

l-norleucine, an isomer of leucine, stimulates the anabolic process of insulin. However, it is not known if and how it improves insulin sensitivity and insulin resistance. This experiment describes the generation of an insulin resistance model using high glucose-induced cells and the administration of 1.0 mmol/L l-norleucine for 48 h, to observe the effects on metabolism and gene expression in skeletal muscle cells. The results showed that l-norleucine significantly increased mitochondrial ATP content, decreased the amount of reactive oxygen species (ROS) and promoted the expression of mitochondrial generation-related genes TFAM, AMPK, PGC-1α in cells under high glucose treatment; at the same time, l-norleucine also increased glucose uptake, suggesting that l-norleucine increased insulin sensitivity and improved insulin resistance. This study suggesting that l-norleucine improves insulin resistance by ameliorating oxidative stress damage of mitochondria, improving mitochondrial function, and improving insulin sensitivity in skeletal muscle cell caused by high glucose, rather than by altering mitochondrial efficiency.


Asunto(s)
Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Insulina/metabolismo , Norleucina/metabolismo , Norleucina/farmacología , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias Musculares/metabolismo
17.
Biochem Biophys Res Commun ; 696: 149494, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219491

RESUMEN

Skeletal muscle is the largest metabolic tissue responsible for systemic glucose handling. Glucose uptake into skeletal tissue is highly dynamic and delicately regulated, in part through the controlled expression and subcellular trafficking of multiple types of glucose transporters. Although the roles of GLUT4 in skeletal muscle metabolism are well established, the physiological significance of other, seemingly redundant, glucose transporters remain incompletely understood. Nonetheless, recent studies have shed light on the roles of several glucose transporters, such as GLUT1 and GLUT10, in skeletal muscle. Mice experiments suggest that GLUT10 could be a novel player in skeletal muscle metabolism in the context of mechanical overload, which is in line with the meta-analytical results of gene expression changes after resistance exercise in humans. Herein we discuss the knowns, unknowns, and implications of these recent findings.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Proteínas de Transporte de Monosacáridos , Animales , Humanos , Ratones , Transporte Biológico , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Músculo Esquelético/metabolismo
18.
Eur Biophys J ; 53(4): 183-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647542

RESUMEN

The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.


Asunto(s)
Citosol , Eritrocitos , Glucosa , Microondas , Agua , Citosol/metabolismo , Glucosa/metabolismo , Agua/metabolismo , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/citología , Calcio/metabolismo , Humanos , Transporte Biológico , Iones/metabolismo , Ouabaína/farmacología , Sodio/metabolismo
19.
Bioorg Med Chem Lett ; 97: 129562, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967654

RESUMEN

ß2-Adrenergic receptor (ß2AR) agonists have been reported to stimulate glucose uptake (GU) by skeletal muscle cells and are therefore highly interesting as a possible treatment for type 2 diabetes (T2D). The chirality of compounds often has a great impact on the activity of ß2AR agonists, although this has thus far not been investigated for GU. Here we report the GU for a selection of synthesized acyclic and cyclic ß-hydroxy-3-fluorophenethylamines. For the N-butyl and the N-(2-pentyl) compounds, the (R) and (R,R) (3d and 7e) stereoisomers induced the highest GU. When the compounds contained a saturated nitrogen containing 4- to 7-membered heterocycle, the (R,R,R) enantiomer of the azetidine (8a) and the pyrrolidine (9a) had the highest activity. Altogether, these results provide pivotal information for designing novel ß2AR agonist for the treatment of T2D.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Diabetes Mellitus Tipo 2 , Humanos , Agonistas Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacología , Aminas , Transporte Biológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Receptores Adrenérgicos beta 2/metabolismo
20.
Can J Physiol Pharmacol ; 102(3): 180-195, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329060

RESUMEN

Prenatal glucocorticoid exposure has been shown to alter hypothalamic-pituitary-adrenal axis function resulting in altered fetal development that can persist through adulthood. Fetal exposure to excess dexamethasone, a synthetic glucocorticoid, has been shown to alter adult behaviour and metabolism. This study investigated the effects prenatal dexamethasone exposure had on adult offspring cardiac and liver metabolism and oxidative stress. Pregnant C57BL/6 mice received a dose of 0.4 mg/kg dexamethasone on gestational days 15-17. Once pups were approximately 7 months old, glucose uptake was determined using positron emission tomography and insulin resistance (IR) was determined by homeostatic model assessment (HOMA) IR calculation. Oxidative stress was assessed by measuring 4-hydroxynonenal protein adduct formation and total reactive oxygen species. Female dexamethasone group had significantly increased glucose uptake when insulin stimulated compared to vehicle-treated mice. HOMA IR revealed no evidence of IR in either male or female offspring. There was also no change in oxidative stress markers in either cardiac or liver tissues of male or female offspring. These data suggest that prenatal dexamethasone exposure in male mice does not alter oxidative stress or metabolism. However, prenatal dexamethasone exposure increased glucocorticoids, cardiac glucose uptake, and pAkt signaling in female heart tissues in adult mice, suggesting there are sex differences in prenatal dexamethasone exposure.


Asunto(s)
Glucocorticoides , Resistencia a la Insulina , Femenino , Masculino , Embarazo , Animales , Ratones , Ratones Endogámicos C57BL , Glucocorticoides/efectos adversos , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Estrés Oxidativo , Glucosa , Dexametasona/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA