Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.858
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941602

RESUMEN

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Microbioma Gastrointestinal/inmunología , Diferenciación Celular , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Bacterias/inmunología , Bacterias/metabolismo
2.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941607

RESUMEN

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Asunto(s)
Neuroinmunomodulación , Humanos , Animales , Intestinos/inmunología , Homeostasis , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/metabolismo , Neuronas/inmunología , Neuropéptidos/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo
3.
Annu Rev Immunol ; 38: 649-671, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32040356

RESUMEN

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.


Asunto(s)
Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Microbioma Gastrointestinal , Neoplasias Gastrointestinales/etiología , Neoplasias Gastrointestinales/metabolismo , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Inmunidad Adaptativa , Animales , Mucosa Gástrica/patología , Microbioma Gastrointestinal/inmunología , Neoplasias Gastrointestinales/patología , Humanos , Inmunidad Innata , Mucosa Intestinal/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología
4.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38776919

RESUMEN

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Asunto(s)
Hongos , Microbioma Gastrointestinal , Micobioma , Animales , Humanos , Masculino , Ratones , Heces/microbiología , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Genoma Fúngico/genética , Genómica , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/genética , Metagenoma , Filogenia , Femenino , Adulto , Persona de Mediana Edad
5.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366592

RESUMEN

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Microbioma Gastrointestinal , Sorbitol , Animales , Ratones , Antibacterianos/farmacología , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
6.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280375

RESUMEN

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Asunto(s)
Intestinos , Hígado , Animales , Ratones , Proliferación Celular , Hígado/metabolismo , PPAR alfa/metabolismo , Proteómica , Células Madre/metabolismo , Vía de Señalización Wnt , Intestinos/citología , Intestinos/metabolismo
7.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653239

RESUMEN

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Asunto(s)
Akkermansia , Bacteroides , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Simbiosis , Animales , Humanos , Masculino , Ratones , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas/genética , Hígado Graso/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Verrucomicrobia/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología
8.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428395

RESUMEN

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Asunto(s)
Bacterias , Tracto Gastrointestinal , Metagenoma , Plásmidos , Humanos , Bacterias/genética , Bacteroidetes/genética , Heces/microbiología , Plásmidos/genética
9.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906102

RESUMEN

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Inmunoterapia , Neoplasias Pulmonares , Neoplasias , Femenino , Humanos , Masculino , Akkermansia , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Disbiosis/microbiología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/tratamiento farmacológico , Metagenómica/métodos , Neoplasias/microbiología , Resultado del Tratamiento
10.
Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38981480

RESUMEN

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

11.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280374

RESUMEN

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Asunto(s)
Complemento C3 , Mucosa Intestinal , Microbiota , Animales , Humanos , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neutrófilos , Complemento C3/metabolismo , Células del Estroma/metabolismo
12.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490195

RESUMEN

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Indoles/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
13.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541196

RESUMEN

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Asunto(s)
Tránsito Gastrointestinal , Canales Iónicos , Mecanotransducción Celular , Animales , Humanos , Ratones , Digestión , Canales Iónicos/metabolismo , Neuronas/metabolismo
14.
Cell ; 186(10): 2092-2110.e23, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172563

RESUMEN

The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Animales , Macaca fascicularis , Blastocisto , Organogénesis , Primates
15.
Cell ; 186(14): 3111-3124.e13, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37348505

RESUMEN

The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Eucariontes , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica
16.
Cell ; 185(14): 2478-2494.e28, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35662413

RESUMEN

Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.


Asunto(s)
Apetito , Péptido 1 Similar al Glucagón/metabolismo , Íleon , Neuronas , Estómago , Abdomen , Animales , Comunicación Celular , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Íleon/inervación , Íleon/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Estómago/inervación , Estómago/metabolismo
17.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563663

RESUMEN

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Lactante , Embarazo , Microbioma Gastrointestinal/genética , Microbiota/genética , Madres , Lactancia Materna , Heces , Secuencias Repetitivas Esparcidas
18.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323316

RESUMEN

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Asunto(s)
Bifidobacterium longum , Lactante , Niño , Femenino , Humanos , Preescolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Destete , Oligosacáridos/metabolismo , Bangladesh , Leche Humana , Heces/microbiología
19.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931082

RESUMEN

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , Transgenes
20.
Cell ; 185(19): 3467-3486.e16, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113426

RESUMEN

Changes in gut microbiota have been associated with several diseases. Here, the International Multiple Sclerosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients (36% untreated) and genetically unrelated household healthy controls (1,152 total subjects). We observed a significantly increased proportion of Akkermansia muciniphila, Ruthenibacterium lactatiformans, Hungatella hathewayi, and Eisenbergiella tayi and decreased Faecalibacterium prausnitzii and Blautia species. The phytate degradation pathway was over-represented in untreated MS, while pyruvate-producing carbohydrate metabolism pathways were significantly reduced. Microbiome composition, function, and derived metabolites also differed in response to disease-modifying treatments. The therapeutic activity of interferon-ß may in part be associated with upregulation of short-chain fatty acid transporters. Distinct microbial networks were observed in untreated MS and healthy controls. These results strongly support specific gut microbiome associations with MS risk, course and progression, and functional changes in response to treatment.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , Ácidos Grasos Volátiles , Humanos , Interferón beta , Ácido Fítico , Piruvatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA