Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Toxicol ; 43(3): 243-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38183303

RESUMEN

This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-ß-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 µg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 µM) > pinocembrin (144 µM) > quercetin (222 µM) > titanium dioxide (704 µM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.


Asunto(s)
Supervivencia Celular , Fibroblastos , Extractos Vegetales , Protectores Solares , Humanos , Protectores Solares/toxicidad , Protectores Solares/química , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Fibroblastos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Salvia/química , Daño del ADN/efectos de los fármacos , Células Cultivadas , Lippia/química , Cromatografía de Gases y Espectrometría de Masas
2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542198

RESUMEN

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Asunto(s)
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animales , Humanos , Celecoxib/farmacología , Celecoxib/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Caenorhabditis elegans/metabolismo , Ciclooxigenasa 2/metabolismo , PPAR gamma/metabolismo , Sulfonamidas/farmacología , Pirazoles/farmacología , Apoptosis , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Línea Celular , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral
3.
Biotechnol Bioeng ; 120(10): 2853-2864, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227037

RESUMEN

Currently, there is a lack of suitable models for in-vitro studies of malignant melanoma and traditional single cell culture models no longer reproduce tumor structure and physiological complexity well. The tumor microenvironment is closely related to carcinogenesis and it is particularly important to understand how tumor cells interact and communicate with surrounding nonmalignant cells. Three-dimensional (3D) in vitro multicellular culture models can better simulate the tumor microenvironment due to their excellent physicochemical properties. In this study, 3D composite hydrogel scaffolds were prepared from gelatin methacrylate and polyethylene glycol diacrylate hydrogels by 3D printing and light curing techniques, and 3D multicellular in vitro tumor culture models were established by inoculating human melanoma cells (A375) and human fibroblasts cells on them. The cell proliferation, migration, invasion, and drug resistance of the 3D multicellular in vitro model was evaluated. Compared with the single-cell model, the cells in the multicellular model had higher proliferation activity and migration ability, and were easy to form dense structures. Several tumor cell markers, such as matrix metalloproteinase-9 (MMP-9), MMP-2, and vascular endothelial growth factor, were highly expressed in the multicellular culture model, which were more favorable for tumor development. In addition, higher cell survival rate was observed after exposure to luteolin. The anticancer drug resistance result of the malignant melanoma cells in the 3D bioprinted construct demonstrated physiological properties, suggesting the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.


Asunto(s)
Bioimpresión , Melanoma , Humanos , Factor A de Crecimiento Endotelial Vascular , Proliferación Celular , Técnicas de Cultivo de Célula , Impresión Tridimensional , Hidrogeles/química , Bioimpresión/métodos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Microambiente Tumoral
4.
J Microencapsul ; 40(8): 613-629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37815151

RESUMEN

This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay. All prepared Lip-NRPs had a mean diameter less than 240 nm, polydispersity index less than 0.32, and zeta potential more than -23 mV. Among them, the radioprotective effect of Lip-RES was lowest, while that of Lip-QUE was highest. Lip-SIL also exhibited a high radioprotective effect despite its low DPPH-radical scavenging activity (12.9%). The radioprotective effects of Lip-NRPs do not solely depend on the free radical scavenging activity of NRPs but also on their ability to activate cellular mechanisms.


Asunto(s)
Curcumina , Liposomas , Humanos , Resveratrol , Piel , Curcumina/farmacología , Linfocitos
5.
Adv Gerontol ; 36(6): 803-809, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38426916

RESUMEN

Determination the activity of the genes of sirtuin-1, hyaluronidase, TGF-ß cytokine, calreticulin in the process of replicative aging of human fibroblasts in vitro and the effect of hyaluronan preparations with gold nanoparticles on the activity of replicative cell aging. Compared the expression of proteins of the studied genes using specific markers at 7 and 14 passages of cultivation of fibroblasts isolated from human skin, without drugs and in the presence of drugs in the growth medium. This work shows a decrease in the activity of the sirtuin 1 gene and an increase in the expression of hyaluronidase in the process of replicative aging of human fibroblasts. Found a means of slowing down replicative aging by activating the SIRT-1 gene and reducing the activity of hyaluronidase in action in the growth medium of hyaluronan preparations with gold nanoparticles. The discussed variants of cell transitions to the pathological state, caused by replicative aging and the mechanisms of slowing down the replicative aging of human fibroblasts.


Asunto(s)
Ácido Hialurónico , Nanopartículas del Metal , Humanos , Ácido Hialurónico/farmacología , Oro/farmacología , Oro/metabolismo , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/farmacología , Envejecimiento/genética , Fibroblastos/metabolismo , Senescencia Celular , Citocinas/metabolismo , Células Cultivadas
6.
Bull Exp Biol Med ; 175(4): 450-453, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37768460

RESUMEN

We studied changes in the number of residual γH2AX foci in cultured human fibroblasts with different expression of the cell proliferation marker protein Ki-67 24, 48, and 72 h after exposure to X-ray radiation in doses of 2-10 Gy. It was shown that, regardless of the expression of Ki-67, the number of residual γH2AX foci in irradiated cells linearly depends on the absorbed dose of X-ray radiation. However, the quantitative yield of residual γH2AX foci per unit of the absorbed dose in Ki-67+ cells 24 and 48 h after irradiation was higher than in Ki-67- cells by 1.8 and 2.0 times, respectively. In Ki-67- cells, the quantitative yield of residual γH2AX foci per unit of absorbed dose decreases by ~1.7 times with increasing the time after irradiation from 24 to 72 h. For the purposes of practical radiation biodosimetry, it can be recommended to quantify residual γH2AX foci in non-proliferating cells at least 72 h after irradiation.


Asunto(s)
Reparación del ADN , Histonas , Humanos , Rayos X , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Histonas/genética , Histonas/metabolismo , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo
7.
J Cell Mol Med ; 26(8): 2337-2350, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278036

RESUMEN

Senescence occurs upon critical telomere shortening, or following DNA damage, oncogenic activation, hypoxia and oxidative stress, overall referred to stress-induced premature senescence (SIPS). In response to DNA damage, senescent cells release cytoplasmic chromatin fragments (CCFs), and express an altered secretome, the senescence-associated secretory phenotype (SASP), which contributes to generate a pro-inflammatory and pro-tumoral extracellular milieu. Polyphenols have gained significant attention owing to their anti-inflammatory and anti-tumour activities. Here, we studied the effect of oleuropein aglycone (OLE) and hydroxytyrosol (HT) on DNA damage, CCF appearance and SASP in a model of irradiation-induced senescence. Neonatal human dermal fibroblasts (NHDFs) were γ-irradiated and incubated with OLE, 5 µM and HT, 1 µM. Cell growth and senescence-associated (SA)-ß-Gal-staining were used as senescence markers. DNA damage was evaluated by Comet assay, lamin B1 expression, release of CCFs, cyclic GMP-AMP Synthase (cGAS) activation. IL-6, IL-8, MCP-1 and RANTES were measured by ELISA assay. Our results showed that OLE and HT exerted a protective effect on 8 Gy irradiation-induced senescence, preserving lamin B1 expression and reducing cGAS/STING/NFκB-mediated SASP. The ability of OLE and HT to mitigate DNA damage, senescence status and the related SASP in normal cells can be exploited to improve the efficacy and safety of cancer radiotherapy.


Asunto(s)
Neoplasias , Olea , Senescencia Celular , Daño del ADN , Humanos , Lamina Tipo B , FN-kappa B/genética , Neoplasias/metabolismo , Nucleotidiltransferasas/genética , Olea/metabolismo , Fenoles/farmacología , Radiación Ionizante
8.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163660

RESUMEN

Induced neural stem cells (iNSCs) reprogrammed from somatic cells hold great potentials for drug discovery, disease modelling and the treatment of neurological diseases. Although studies have shown that human somatic cells can be converted into iNSCs by introducing transcription factors, these iNSCs are unlikely to be used for clinical application due to the safety concern of using exogenous genes and viral transduction vectors. Here, we report the successful conversion of human fibroblasts into iNSCs using a cocktail of small molecules. Furthermore, our results demonstrate that these human iNSCs (hiNSCs) have similar gene expression profiles to bona fide NSCs, can proliferate, and are capable of differentiating into glial cells and functional neurons. This study collectively describes a novel approach based on small molecules to produce hiNSCs from human fibroblasts, which may be useful for both research and therapeutic purposes.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Células-Madre Neurales/citología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Fenómenos Electrofisiológicos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Int J Mol Sci ; 23(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35628639

RESUMEN

Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular ß-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.


Asunto(s)
Senescencia Celular , Fibroblastos , Envejecimiento , Animales , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Recién Nacido , Espectroscopía de Resonancia Magnética , Mamíferos
10.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077548

RESUMEN

The prostacyclin analogue iloprost is used to treat vascular alterations and digital ulcers, the early derangements manifesting in systemic sclerosis (SSc), an autoimmune disease leading to skin and organ fibrosis. Bioindicator(s) of SSc onset and progress are still lacking and the therapeutic approach remains a challenge. The T helper 1 (Th1) chemokine interferon (IFN)γ-induced protein 10 (IP-10/CXCL10) associates with disease progression and worse prognosis. Endothelial cells and fibroblasts, under Th1-dominance, release CXCL10, further enhancing SSc's detrimental status. We analyzed the effect of iloprost on CXCL10 in endothelial cells, dermal fibroblasts, and in the serum of SSc patients. Human endothelial cells and dermal fibroblasts activated with IFNγ/Tumor Necrosis Factor (TNF)α, with/without iloprost, were investigated for CXCL10 secretion/expression and for intracellular signaling cascade underlying chemokine release (Signal Transducer and Activator of Transcription 1, STAT1; Nuclear Factor kappa-light-chain-enhancer of activated B cells, NF-kB; c-Jun NH2-terminal kinase, JNK: Phosphatidyl-Inositol 3-kinase (PI3K)/protein kinase B, AKT; Extracellular signal-Regulated Kinase 1/2, ERK1/2). CXCL10 was quantified in sera from 25 patients taking iloprost, satisfying the American College of Rheumatology (ACR)/European Alliance of Associations for Rheumatology (EULAR) 2013 classification criteria for SSc, and in sera from 20 SSc sex/age-matched subjects without therapy, previously collected. In human endothelial cells and fibroblasts, iloprost targeted CXCL10, almost preventing IFNγ/TNFα-dependent cascade activation in endothelial cells. In SSc subjects taking iloprost, serum CXCL10 was lower. These in vitro and in vivo data suggest a potential role of iloprost to limit CXCL10 at local vascular/dermal and systemic levels in SSc and warrant further translational research aimed to ameliorate SSc understanding/management.


Asunto(s)
Iloprost , Esclerodermia Sistémica , Quimiocina CXCL10/metabolismo , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Epoprostenol/metabolismo , Humanos , Iloprost/metabolismo , Iloprost/farmacología , Iloprost/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361562

RESUMEN

Sumac, Rhus coriaria L., is a Mediterranean plant showing several useful properties, such as antioxidant and neuroprotective effects. Currently, there is no evidence about its possible neuroprotective action in Parkinson's disease (PD). We hypothesized that sumac could modulate mitochondrial functionality in fibroblasts of familial early-onset PD patients showing PARK2 mutations. Sumac extract volatile profile, polyphenolic content and antioxidant activity have been previously characterized. We evaluated ROS and ATP levels on sumac-treated patients' and healthy control fibroblasts. In PD fibroblasts, all treatments were effective in reducing H2O2 levels, while patients' ATP content was modulated differently, probably due to the varying mutations in the PARK2 gene found in individual patients which are also involved in different mitochondrial phenotypes. We also investigated the effect of sumac extract on THP-1-differentiated macrophages, which show different embryogenic origin with respect to fibroblasts. In THP-1 macrophages, sumac treatment determined a reduction in H2O2 levels and an increase in the mitochondrial ATP content in M1, assuming that sumac could polarize the M1 to M2 phenotype, as demonstrated with other food-derived compounds rich in polyphenols. In conclusion, Rhus coriaria L. extracts could represent a potential nutraceutical approach to PD.


Asunto(s)
Enfermedad de Parkinson , Rhus , Antioxidantes/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Peróxido de Hidrógeno , Extractos Vegetales/farmacología , Fibroblastos , Macrófagos , Metabolismo Energético , Adenosina Trifosfato
12.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744886

RESUMEN

Osteosarcoma (OS) is a malignant disease characterized by poor prognosis due to a high incidence of metastasis and chemoresistance. Recently, Licochalcone A (Lic-A) has been reported as a promising agent against OS. Starting from chalcones selected from a wide in-house library, a new series was designed and synthetized. The antitumor activity of the compounds was tested on the MG63 OS cell line through the innovative Quantitative Phase Imaging technique and MTT assay. To further investigate the biological profile of active derivatives, cell cycle progression and apoptosis induction were evaluated. An earlier and more consistent arrest in the G2-M phase with respect to Lic-A was observed. Moreover, apoptosis was assessed by Annexin V staining as well as by the detection of typical morphological features of apoptotic cells. Among the selected compounds, 1e, 1q, and 1r proved to be the most promising antitumor molecules. This study pointed out that an integrated methodological approach may constitute a valuable platform for the rapid screening of large series of compounds.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Chalcona , Chalconas , Osteosarcoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Chalcona/farmacología , Chalconas/farmacología , Chalconas/uso terapéutico , Humanos , Osteosarcoma/patología
13.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080288

RESUMEN

Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.


Asunto(s)
Quempferoles , Protectores Solares , Flores , Glucósidos , Humanos , Extractos Vegetales/farmacología , Plantas , Quercetina , Protectores Solares/farmacología , Rayos Ultravioleta
14.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234903

RESUMEN

Red onion, a species of great economic importance rich in phytochemicals (bioactive compounds) known for its medicinal properties, was fertilized with sulphur-bentonite enriched with orange residue or olive pomace, with the aim of producing onion enriched in health beneficial compounds. There is a worldwide great demand of minimally processed food or food ingredients with functional properties because of a new awareness of how important healthy functional nutrition is in life. Phytochemicals have the capacity to regulate most of the metabolic processes resulting in health benefits. Red onion bioactive compound quantity and quality can vary according to cultivation practices. The main aims of the current research were to determine the chemical characteristics of the crude extracts from red onion bulbs differently fertilized and to evaluate their biological activity in normal and oxidative stress conditions. The lyophilized onion bulbs have been tested in vitro on two cellular models, i.e., the H9c2 rat cardiomyoblast cell line and primary human dermal fibroblasts, in terms of viability and oxygen radical homeostasis. The results evidenced different phytochemical compositions and antioxidant activities of the extracts obtained from red onions differently fertilized. Sulphur-bentonite fertilizers containing orange waste and olive pomace positively affected the red onion quality with respect to the red onion control, evidencing that sulphur-bentonite-organic fertilization was able to stimulate plant a secondary metabolism inducing the production of phytochemicals with healthy functions. A positive effect of the extracts from red onions treated with fertilizers-in particular, with those containing orange waste, such as the reduction of oxidative stress and induction of cell viability of H9c2 and human fibroblasts-was observed, showing a concentration- and time-dependent profile. The results evidenced that the positive effects were related to the phenols and, in particular, to chlorogenic and p-coumaric acids and to the flavonol kaempferol, which were more present in red onion treated with low orange residue than in the other treated ones.


Asunto(s)
Ingredientes Alimentarios , Olea , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Bentonita , Ácidos Cumáricos/farmacología , Fertilizantes , Humanos , Quempferoles/farmacología , Mamíferos/metabolismo , Olea/metabolismo , Cebollas/química , Estrés Oxidativo , Fenoles/farmacología , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Azufre/farmacología
15.
Am J Physiol Cell Physiol ; 321(1): C176-C186, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106788

RESUMEN

Maintaining mitochondrial function and dynamics is crucial for cellular health. In muscle, defects in mitochondria result in severe myopathies where accumulation of damaged mitochondria causes deterioration and dysfunction. Importantly, understanding the role of mitochondria in disease is a necessity to determine future therapeutics. One of the most common myopathies is mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), which has no current treatment. Recently, patients with MELAS treated with rapamycin exhibited improved clinical outcomes. However, the cellular mechanisms of rapamycin effects in patients with MELAS are currently unknown. In this study, we used cultured skin fibroblasts as a window into the mitochondrial dysfunction evident in MELAS cells, as well as to study the mechanisms of rapamycin action, compared with control, healthy individuals. We observed that mitochondria from patients were fragmented, had a threefold decline in the average speed of motility, a twofold reduced mitochondrial membrane potential, and a 1.5- to 2-fold decline in basal respiration. Despite the reduction in mitochondrial function, mitochondrial import protein Tim23 was elevated in patient cell lines. MELAS fibroblasts exhibited increased MnSOD levels and lysosomal function when compared with healthy controls. Treatment of MELAS fibroblasts with rapamycin for 24 h resulted in increased mitochondrial respiration compared with control cells, a higher lysosome content, and a greater localization of mitochondria to lysosomes. Our studies suggest that rapamycin has the potential to improve cellular health even in the presence of mtDNA defects, primarily via an increase in lysosomal content.


Asunto(s)
Fibroblastos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Síndrome MELAS/genética , Mitocondrias/efectos de los fármacos , Sirolimus/farmacología , Estudios de Casos y Controles , Preescolar , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Lactante , Lisosomas/metabolismo , Síndrome MELAS/tratamiento farmacológico , Síndrome MELAS/metabolismo , Síndrome MELAS/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adulto Joven
16.
Funct Integr Genomics ; 21(3-4): 503-511, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34269961

RESUMEN

Cartilage acidic protein 1A (hCRTAC1-A) is an extracellular matrix protein (ECM) of human hard and soft tissue that is associated with matrix disorders. The central role of fibroblasts in tissue integrity and ECM health made primary human dermal fibroblasts (NHDF) the model for the present study, which aimed to provide new insight into the molecular function of hCRTAC1-A. Specifically, we explored the differential expression patterns of specific genes associated with the presence of hCRTAC1-A by RNA-seq and RT-qPCR analysis. Functional enrichment analysis demonstrated, for the very first time, that hCRTAC1-A is involved in extracellular matrix organization and development, through its regulatory effect on asporin, decorin, and complement activity, in cell proliferation, regeneration, wound healing, and collagen degradation. This work provides a better understanding of putative hCRTAC1-A actions in human fibroblasts and a fundamental insight into its function in tissue biology.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Dermis , Fibroblastos , Transcriptoma , Células Cultivadas , Dermis/citología , Fibroblastos/metabolismo , Humanos , RNA-Seq
17.
Genomics ; 112(3): 2541-2549, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057913

RESUMEN

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.


Asunto(s)
Aneuploidia , ADN (Citosina-5-)-Metiltransferasa 1/genética , Regulación de la Expresión Génica , Proteínas Mad2/genética , Proteína de Retinoblastoma/genética , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Proteínas Mad2/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo de Interacción de Proteínas , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de Retinoblastoma/metabolismo , Transcriptoma
18.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638552

RESUMEN

Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease's onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.


Asunto(s)
Ataxia/genética , Ataxia/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Debilidad Muscular/genética , Debilidad Muscular/patología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/diagnóstico , Exoma/genética , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Mitocondriales/diagnóstico , Debilidad Muscular/diagnóstico , Ubiquinona/análisis , Ubiquinona/biosíntesis , Ubiquinona/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
19.
J Cell Mol Med ; 24(7): 3971-3981, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32160419

RESUMEN

In the past few years, Leydig cell (LC) transplantation has been regarded as an effective strategy for providing physiological patterns of testosterone in vivo. Recently, we have successfully converted human foreskin fibroblasts (HFFs) into functional Leydig-like cells (iLCs) in vitro by using the CRISPR/dCas9 system, which shows promising potential for seed cells. However, it is not known whether the reprogrammed iLCs can survive or restore serum testosterone levels in vivo. Therefore, in this study, we evaluate whether reprogrammed iLCs can restore the serum testosterone levels of castrated rats when they are transplanted into the fibrous capsule. We first developed the castrated Sprague Dawley rat model through bilateral orchiectomy and subsequently injected extracellular matrix gel containing transplanted cells into the fibrous capsule of castrated rats. Finally, we evaluated dynamic serum levels of testosterone and luteinizing hormone (LH) in castrated rats, the survival of implanted iLCs, and the expression levels of Leydig steroidogenic enzymes by immunofluorescence staining and Western blotting. Our results demonstrated that implanted iLCs could partially restore the serum testosterone level of castrated rats, weakly mimic the role of adult Leydig cells in the hypothalamic-pituitary-gonadal axis for a short period, and survive and secrete testosterone, through 6 weeks after transplantation. Therefore, this study may be valuable for treating male hypogonadism in the future.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reprogramación Celular/genética , Espermatogénesis/genética , Testosterona/sangre , Animales , Castración , Fibroblastos/citología , Fibroblastos/metabolismo , Prepucio/citología , Prepucio/metabolismo , Humanos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
20.
J Gen Virol ; 101(3): 284-289, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958050

RESUMEN

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, ß- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.


Asunto(s)
Alphaherpesvirinae/metabolismo , Betaherpesvirinae/metabolismo , Fibroblastos/metabolismo , Gammaherpesvirinae/metabolismo , Infecciones por Herpesviridae/metabolismo , Linfocitos/metabolismo , Proteínas Quinasas/metabolismo , Replicación Viral/fisiología , Células Cultivadas , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Transducción de Señal/fisiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA