Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2306549121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300861

RESUMEN

Understanding and predicting the emergence and evolution of cultural tastes manifested in consumption patterns is of central interest to social scientists, analysts of culture, and purveyors of content. Prior research suggests that taste preferences relate to personality traits, values, shifts in mood, and immigration destination. Understanding everyday patterns of listening and the function music plays in life has remained elusive, however, despite speculation that musical nostalgia may compensate for local disruption. Using more than one hundred million streams of four million songs by tens of thousands of international listeners from a global music service, we show that breaches in personal routine are systematically associated with personal musical exploration. As people visited new cities and countries, their preferences diversified, converging toward their travel destinations. As people experienced the very different disruptions associated with COVID-19 lockdowns, their preferences diversified further. Personal explorations did not tend to veer toward the global listening average, but away from it, toward distinctive regional musical content. Exposure to novel music explored during periods of routine disruption showed a persistent influence on listeners' future consumption patterns. Across all of these settings, musical preference reflected rather than compensated for life's surprises, leaving a lasting legacy on tastes. We explore the relationship between these findings and global patterns of behavior and cultural consumption.


Asunto(s)
Música , Humanos , Afecto , Predicción
2.
Proc Natl Acad Sci U S A ; 120(42): e2306710120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37824525

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread have altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here, we utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km for over 5 million users and epidemiological surveillance data collected during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30 to 59 y old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the effect of heterogenous behavior on the spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19, and, more broadly, of respiratory pathogens.


Asunto(s)
COVID-19 , Masculino , Humanos , COVID-19/epidemiología , China/epidemiología , SARS-CoV-2 , Brotes de Enfermedades , Procesos de Grupo
3.
Proc Natl Acad Sci U S A ; 120(20): e2219816120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37159476

RESUMEN

Current methods for near real-time estimation of effective reproduction numbers from surveillance data overlook mobility fluxes of infectors and susceptible individuals within a spatially connected network (the metapopulation). Exchanges of infections among different communities may thus be misrepresented unless explicitly measured and accounted for in the renewal equations. Here, we first derive the equations that include spatially explicit effective reproduction numbers, ℛk(t), in an arbitrary community k. These equations embed a suitable connection matrix blending mobility among connected communities and mobility-related containment measures. Then, we propose a tool to estimate, in a Bayesian framework involving particle filtering, the values of ℛk(t) maximizing a suitable likelihood function reproducing observed patterns of infections in space and time. We validate our tools against synthetic data and apply them to real COVID-19 epidemiological records in a severely affected and carefully monitored Italian region. Differences arising between connected and disconnected reproduction numbers (the latter being calculated with existing methods, to which our formulation reduces by setting mobility to zero) suggest that current standards may be improved in their estimation of disease transmission over time.


Asunto(s)
COVID-19 , Humanos , Número Básico de Reproducción , Incidencia , Teorema de Bayes , COVID-19/epidemiología , Funciones de Verosimilitud
4.
Proc Natl Acad Sci U S A ; 119(33): e2203042119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939676

RESUMEN

A common feature of large-scale extreme events, such as pandemics, wildfires, and major storms is that, despite their differences in etiology and duration, they significantly change routine human movement patterns. Such changes, which can be major or minor in size and duration and which differ across contexts, affect both the consequences of the events and the ability of governments to mount effective responses. Based on naturally tracked, anonymized mobility behavior from over 90 million people in the United States, we document these mobility differences in space and over time in six large-scale crises, including wildfires, major tropical storms, winter freeze and pandemics. We introduce a model that effectively captures the high-dimensional heterogeneity in human mobility changes following large-scale extreme events. Across five different metrics and regardless of spatial resolution, the changes in human mobility behavior exhibit a consistent hyperbolic decline, a pattern we characterize as "spatiotemporal decay." When applied to the case of COVID-19, our model also uncovers significant disparities in mobility changes-individuals from wealthy areas not only reduce their mobility at higher rates at the start of the pandemic but also maintain the change longer. Residents from lower-income regions show a faster and greater hyperbolic decay, which we suggest may help account for different COVID-19 rates. Our model represents a powerful tool to understand and forecast mobility patterns post emergency, and thus to help produce more effective responses.


Asunto(s)
COVID-19 , Migración Humana , Modelos Estadísticos , Desastres Naturales , Pandemias , COVID-19/epidemiología , Predicción , Migración Humana/tendencias , Humanos , Renta , Estaciones del Año , Análisis Espacio-Temporal , Estados Unidos
5.
Environ Sci Technol ; 58(10): 4617-4626, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38419288

RESUMEN

Understanding the impact of heavy precipitation on human mobility is critical for finer-scale urban flood risk assessment and achieving sustainable development goals #11 to build resilient and safe cities. Using ∼2.6 million mobile phone signal data collected during the summer of 2018 in Jiangsu, China, this study proposes a novel framework to assess human mobility changes during rainfall events at a high spatial granularity (500 m grid cell). The fine-scale mobility map identifies spatial hotspots with abnormal clustering or reduced human activities. When aggregating to the prefecture-city level, results show that human mobility changes range between -3.6 and 8.9%, revealing varied intracity movement across cities. Piecewise structural equation modeling analysis further suggests that city size, transport system, and crowding level directly affect mobility responses, whereas economic conditions influence mobility through multiple indirect pathways. When overlaying a historical urban flood map, we find such human mobility changes help 23 cities reduce 2.6% flood risks covering 0.45 million people but increase a mean of 1.64% flood risks in 12 cities covering 0.21 million people. The findings help deepen our understanding of the mobility pattern of urban dwellers after heavy precipitation events and foster urban adaptation by supporting more efficient small-scale hazard management.


Asunto(s)
Macrodatos , Inundaciones , Humanos , Ciudades , China
6.
J Biomed Inform ; 149: 104571, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092247

RESUMEN

Epidemiological models allow for quantifying the dynamic characteristics of large-scale outbreaks. However, capturing detailed and accurate epidemiological information often requires consideration of multiple kinetic mechanisms and parameters. Due to the uncertainty of pandemic evolution, such as pathogen variation, host immune response and changes in mitigation strategies, the parameter evaluation and state prediction of complex epidemiological models are challenging. Here, we develop a data-driven epidemic model with a generalized SEIR mechanistic structure that includes new compartments, human mobility and vaccination protection. To address the issue of model complexity, we embed the epidemiological model dynamics into physics-informed neural networks (PINN), taking the observed series of time instances as direct input of the network to simultaneously infer unknown parameters and unobserved dynamics of the underlying model. Using actual data during the COVID-19 outbreak in Australia, Israel, and Switzerland, our model framework demonstrates satisfactory performance in multi-step ahead predictions compared to several benchmark models. Moreover, our model infers time-varying parameters such as transmission rates, hospitalization ratios, and effective reproduction numbers, as well as calculates the latent period and asymptomatic infection count, which are typically unreported in public data. Finally, we employ the proposed data-driven model to analyze the impact of different mitigation strategies on COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Brotes de Enfermedades/prevención & control , Incertidumbre , Vacunación
7.
Biol Pharm Bull ; 47(5): 924-929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692870

RESUMEN

The region-to-region spread of human infectious diseases is considered to be dependent on the human mobility flow (HMF). However, it has been hard to obtain the evidence for this. Since the onset of the coronavirus disease 2019 (COVID-19) pandemic in Japan 2020, the government has enforced countermeasures against COVID-19 nationwide, namely the restriction of personal travelling, universal masking, and hand hygiene. As a result, the spread of acute respiratory infections had been effectively controlled. However, COVID-19 as well as pediatric respiratory syncytial virus (RSV) infections were not well-controlled. The region-to-region spread of pediatric RSV infections in 2020-2021 was recognizable unlike those in 2018 and 2019. In this study, we investigated the correlation between the trend of regional reports of the pediatric RSV infections and the HMF based on cellular phone signal data. Upon closer examination of both epidemiological trend and HMF data, the spread of pediatric RSV infection from one region to another was logically explained by HMF, which would serve as the evidence of the dependence of regional transmission on HMF. This is the first solid evidence where this correlation has been clearly observed for the common respiratory infections. While social implementation of infection control measures has successfully suppressed the droplet-mediated respiratory infections, such as influenza, but not the airborne infections, it was suggested that the aerosol transmission and adult asymptomatic carrier were involved in the transmission of RSV akin to COVID-19.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Lactante , Japón/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Virus Sincitial Respiratorio Humano , SARS-CoV-2
8.
J Math Biol ; 88(6): 67, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641762

RESUMEN

Human mobility, which refers to the movement of people from one location to another, is believed to be one of the key factors shaping the dynamics of the COVID-19 pandemic. There are multiple reasons that can change human mobility patterns, such as fear of an infection, control measures restricting movement, economic opportunities, political instability, etc. Human mobility rates are complex to estimate as they can occur on various time scales, depending on the context and factors driving the movement. For example, short-term movements are influenced by the daily work schedule, whereas long-term trends can be due to seasonal employment opportunities. The goal of the study is to perform literature review to: (i) identify relevant data sources that can be used to estimate human mobility rates at different time scales, (ii) understand the utilization of variety of data to measure human movement trends under different contexts of mobility changes, and (iii) unraveling the associations between human mobility rates and social determinants of health affecting COVID-19 disease dynamics. The systematic review of literature was carried out to collect relevant articles on human mobility. Our study highlights the use of three major sources of mobility data: public transit, mobile phones, and social surveys. The results also provides analysis of the data to estimate mobility metrics from the diverse data sources. All major factors which directly and indirectly influenced human mobility during the COVID-19 spread are explored. Our study recommends that (a) a significant balance between primitive and new estimated mobility parameters need to be maintained, (b) the accuracy and applicability of mobility data sources should be improved, (c) encouraging broader interdisciplinary collaboration in movement-based research is crucial for advancing the study of COVID-19 dynamics among scholars from various disciplines.


Asunto(s)
COVID-19 , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , Humanos , Pandemias/estadística & datos numéricos , Conceptos Matemáticos , Determinantes Sociales de la Salud/estadística & datos numéricos , Dinámica Poblacional/estadística & datos numéricos , Fuentes de Información
9.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34162708

RESUMEN

In response to the novel coronavirus disease (COVID-19), governments have introduced severe policy measures with substantial effects on human behavior. Here, we perform a large-scale, spatiotemporal analysis of human mobility during the COVID-19 epidemic. We derive human mobility from anonymized, aggregated telecommunication data in a nationwide setting (Switzerland; 10 February to 26 April 2020), consisting of ∼1.5 billion trips. In comparison to the same time period from 2019, human movement in Switzerland dropped by 49.1%. The strongest reduction is linked to bans on gatherings of more than five people, which are estimated to have decreased mobility by 24.9%, followed by venue closures (stores, restaurants, and bars) and school closures. As such, human mobility at a given day predicts reported cases 7 to 13 d ahead. A 1% reduction in human mobility predicts a 0.88 to 1.11% reduction in daily reported COVID-19 cases. When managing epidemics, monitoring human mobility via telecommunication data can support public decision makers in two ways. First, it helps in assessing policy impact; second, it provides a scalable tool for near real-time epidemic surveillance, thereby enabling evidence-based policies.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2 , Telecomunicaciones/estadística & datos numéricos , Política de Salud/tendencias , Humanos , Vigilancia de la Población , Salud Pública , Suiza/epidemiología , Viaje/estadística & datos numéricos
10.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049993

RESUMEN

The COVID-19 pandemic is a global threat presenting health, economic, and social challenges that continue to escalate. Metapopulation epidemic modeling studies in the susceptible-exposed-infectious-removed (SEIR) style have played important roles in informing public health policy making to mitigate the spread of COVID-19. These models typically rely on a key assumption on the homogeneity of the population. This assumption certainly cannot be expected to hold true in real situations; various geographic, socioeconomic, and cultural environments affect the behaviors that drive the spread of COVID-19 in different communities. What's more, variation of intracounty environments creates spatial heterogeneity of transmission in different regions. To address this issue, we develop a human mobility flow-augmented stochastic SEIR-style epidemic modeling framework with the ability to distinguish different regions and their corresponding behaviors. This modeling framework is then combined with data assimilation and machine learning techniques to reconstruct the historical growth trajectories of COVID-19 confirmed cases in two counties in Wisconsin. The associations between the spread of COVID-19 and business foot traffic, race and ethnicity, and age structure are then investigated. The results reveal that, in a college town (Dane County), the most important heterogeneity is age structure, while, in a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent. Scenario studies further indicate a strong response of the spread rate to various reopening policies, which suggests that policy makers may need to take these heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of COVID-19 and reopening.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Migración Humana , Modelos Biológicos , Pandemias , SARS-CoV-2 , Ciudades/epidemiología , Humanos , Wisconsin/epidemiología
11.
Risk Anal ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074846

RESUMEN

Limited access to food stores is often linked to higher health risks and lower community resilience. Socially vulnerable populations experience persistent disparities in equitable food store access. However, little research has been done to examine how people's access to food stores is affected by natural disasters. Previous studies mainly focus on examining potential access using the travel distance to the nearest food store, which often falls short of capturing the actual access of people. Therefore, to fill this gap, this paper incorporates human mobility patterns into the measure of actual access, leveraging large-scale mobile phone data. Specifically, we propose a novel enhanced two-step floating catchment area method with travel preferences (E2SFCA-TP) to measure accessibility, which extends the traditional E2SFCA model by integrating actual human mobility behaviors. We then analyze people's actual access to grocery and convenience stores across both space and time under the devastating winter storm Uri in Harris County, Texas. Our results highlight the value of using human mobility patterns to better reflect people's actual access behaviors. The proposed E2SFCA-TP measure is more capable of capturing mobility variations in people's access, compared with the traditional E2SFCA measure. This paper provides insights into food store access across space and time, which could aid decision making in resource allocation to enhance accessibility and mitigate the risk of food insecurity in underserved areas.

12.
J Environ Manage ; 366: 121665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032252

RESUMEN

The escalating frequency, duration, and intensity of extreme heat events have posed a significant threat to human society in recent decades. Understanding the dynamic patterns of human mobility under extreme heat will contribute to accurately assessing the risk of extreme heat exposure. This study leverages an emerging geospatial data source, anonymous cell phone location data, to investigate how people in different communities adapt travel behaviors responding to extreme heat events. Taking the Greater Houston Metropolitan Area as an example, we develop two indices, the Mobility Disruption Index (MDI) and the Activity Time Shift Index (ATSI), to quantify diurnal mobility changes and activity time shift patterns at the city and intra-urban scales. The results reveal that human mobility decreases significantly in the daytime of extreme heat events in Houston while the proportion of activity after 8 p.m. is increased, accompanied with a delay in travel time in the evening. Moreover, these mobility-decreasing and activity-delaying effects exhibited substantial spatial heterogeneity across census block groups. Causality analysis using the Geographical Convergent Cross Mapping (GCCM) model combined with correlation analyses indicates that people in areas with a high proportion of minorities and poverty are less able to adopt heat adaptation strategies to avoid the risk of heat exposure. These findings highlight the fact that besides the physical aspect of environmental justice on heat exposure, the inequity lies in the population's capacity and knowledge to adapt to extreme heat. This research is the first of the kind that quantifies multi-level mobility for extreme heat responses, and sheds light on a new facade to plan and implement heat mitigations and adaptation strategies beyond the traditional approaches.


Asunto(s)
Teléfono Celular , Calor Extremo , Humanos
13.
J Environ Manage ; 354: 120482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402789

RESUMEN

Outdoor recreation is important for improving quality of life, well-being, and local economies, but quantifying its value without direct monetary transactions can be challenging. This study explores combining non-market valuation techniques with emerging big data sources to estimate the value of recreation for the York River and surrounding parks in Virginia. By applying the travel cost method to anonymous human mobility data, we gain deeper insights into the significance of recreational experiences for visitors and the local economy. Results of a zero-inflated Negative Binomial model show a mean consumer surplus value of $26.91 per trip, totaling $15.5 million across nearly 600,000 trips observed in 2022. Further, weekends, holidays, and the summer and fall months are found to be peak visitation times, whereas those with young children and who are Hispanic or over 64 years old are less likely to visit. These findings shed light on various factors influencing visitation patterns and recreation values, including temporal effects and socio-demographics, revealing disparities that warrant targeted efforts for inclusivity and accessibility. Policymakers can use these insights to make informed and sustainable choices in outdoor recreation management, fostering the preservation of natural resources for the benefit of both visitors and the environment.


Asunto(s)
Recreación , Ríos , Niño , Humanos , Preescolar , Persona de Mediana Edad , Virginia , Macrodatos , Calidad de Vida
14.
Int J Appl Earth Obs Geoinf ; 131: 103949, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993519

RESUMEN

Timely and precise detection of emerging infections is imperative for effective outbreak management and disease control. Human mobility significantly influences the spatial transmission dynamics of infectious diseases. Spatial sampling, integrating the spatial structure of the target, holds promise as an approach for testing allocation in detecting infections, and leveraging information on individuals' movement and contact behavior can enhance targeting precision. This study introduces a spatial sampling framework informed by spatiotemporal analysis of human mobility data, aiming to optimize the allocation of testing resources for detecting emerging infections. Mobility patterns, derived from clustering point-of-interest and travel data, are integrated into four spatial sampling approaches at the community level. We evaluate the proposed mobility-based spatial sampling by analyzing both actual and simulated outbreaks, considering scenarios of transmissibility, intervention timing, and population density in cities. Results indicate that leveraging inter-community movement data and initial case locations, the proposed Case Flow Intensity (CFI) and Case Transmission Intensity (CTI)-informed spatial sampling enhances community-level testing efficiency by reducing the number of individuals screened while maintaining a high accuracy rate in infection identification. Furthermore, the prompt application of CFI and CTI within cities is crucial for effective detection, especially in highly contagious infections within densely populated areas. With the widespread use of human mobility data for infectious disease responses, the proposed theoretical framework extends spatiotemporal data analysis of mobility patterns into spatial sampling, providing a cost-effective solution to optimize testing resource deployment for containing emerging infectious diseases.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38938876

RESUMEN

Dynamic gridded population data are crucial in fields such as disaster reduction, public health, urban planning, and global change studies. Despite the use of multi-source geospatial data and advanced machine learning models, current frameworks for population spatialization often struggle with spatial non-stationarity, temporal generalizability, and fine temporal resolution. To address these issues, we introduce a framework for dynamic gridded population mapping using open-source geospatial data and machine learning. The framework consists of (i) delineation of human footprint zones, (ii) construction of muliti-scale population prediction models using automated machine learning (AutoML) framework and geographical ensemble learning strategy, and (iii) hierarchical population spatial disaggregation with pycnophylactic constraint-based corrections. Employing this framework, we generated hourly time-series gridded population maps for China in 2016 with a 1-km spatial resolution. The average accuracy evaluated by root mean square deviation (RMSD) is 325, surpassing datasets like LandScan, WorldPop, GPW, and GHSL. The generated seamless maps reveal the temporal dynamic of population distribution at fine spatial scales from hourly to monthly. This framework demonstrates the potential of integrating spatial statistics, machine learning, and geospatial big data in enhancing our understanding of spatio-temporal heterogeneity in population distribution, which is essential for urban planning, environmental management, and public health.

16.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785646

RESUMEN

This article introduces an analytical framework that interprets individual measures of entropy-based mobility derived from mobile phone data. We explore and analyze two widely recognized entropy metrics: random entropy and uncorrelated Shannon entropy. These metrics are estimated through collective variables of human mobility, including movement trends and population density. By employing a collisional model, we establish statistical relationships between entropy measures and mobility variables. Furthermore, our research addresses three primary objectives: firstly, validating the model; secondly, exploring correlations between aggregated mobility and entropy measures in comparison to five economic indicators; and finally, demonstrating the utility of entropy measures. Specifically, we provide an effective population density estimate that offers a more realistic understanding of social interactions. This estimation takes into account both movement regularities and intensity, utilizing real-time data analysis conducted during the peak period of the COVID-19 pandemic.

17.
Clin Infect Dis ; 76(3): e867-e874, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851600

RESUMEN

BACKGROUND: More details about human movement patterns are needed to evaluate relationships between daily travel and malaria risk at finer scales. A multiagent mobility simulation model was built to simulate the movements of villagers between home and their workplaces in 2 townships in Myanmar. METHODS: An agent-based model (ABM) was built to simulate daily travel to and from work based on responses to a travel survey. Key elements for the ABM were land cover, travel time, travel mode, occupation, malaria prevalence, and a detailed road network. Most visited network segments for different occupations and for malaria-positive cases were extracted and compared. Data from a separate survey were used to validate the simulation. RESULTS: Mobility characteristics for different occupation groups showed that while certain patterns were shared among some groups, there were also patterns that were unique to an occupation group. Forest workers were estimated to be the most mobile occupation group, and also had the highest potential malaria exposure associated with their daily travel in Ann Township. In Singu Township, forest workers were not the most mobile group; however, they were estimated to visit regions that had higher prevalence of malaria infection over other occupation groups. CONCLUSIONS: Using an ABM to simulate daily travel generated mobility patterns for different occupation groups. These spatial patterns varied by occupation. Our simulation identified occupations at a higher risk of being exposed to malaria and where these exposures were more likely to occur.


Asunto(s)
Malaria , Humanos , Malaria/epidemiología , Malaria/prevención & control , Viaje , Prevalencia , Mianmar/epidemiología
18.
Environ Sci Technol ; 57(41): 15511-15522, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37791816

RESUMEN

Standard environmental hazard exposure assessment methods have been primarily based on residential places, neglecting individuals' hazard exposures due to activities outside home neighborhood and underestimating peoples' overall hazard exposures. To address this limitation, this study proposes a novel mobility-based index for the hazard exposure evaluation. Using large-scale human mobility data, we quantify the extent of population dwell time in high environmental hazard places in 239 US counties for three environmental hazards. We explore how human mobility extends the reach of environmental hazards and leads to the emergence of latent exposure for populations living outside high-hazard areas. Notably, neglect of mobility can lead to over 10% underestimation of hazard exposures. The interplay of spatial clustering in high-hazard regions and human movement trends creates "environmental hazard traps." Poor and ethnic minority residents disproportionately face multiple types of environmental hazards. This data-driven evidence supports the severity of these injustices. We also studied latent exposure arising from visits outside residents' home areas, revealing millions of the population having 5 to 10% of daily activities occur in high-exposure zones. Despite living in perceived safe areas, human mobility could expose millions of residents to different hazards. These findings provide crucial insights for targeted policies to mitigate these severe environmental injustices.


Asunto(s)
Etnicidad , Grupos Minoritarios , Humanos , Vivienda , Exposición a Riesgos Ambientales , Características de la Residencia
19.
BMC Infect Dis ; 23(1): 428, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355572

RESUMEN

BACKGROUND: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread over the world and caused tremendous impacts on global health. Understanding the mechanism responsible for the spread of this pathogen and the impact of specific factors, such as human mobility, will help authorities to tailor interventions for future SARS-CoV-2 waves or newly emerging airborne infections. In this study, we aim to analyze the spatio-temporal transmission of SARS-CoV-2 in Belgium at municipality level between January and December 2021 and explore the effect of different levels of human travel on disease incidence through the use of counterfactual scenarios. METHODS: We applied the endemic-epidemic modelling framework, in which the disease incidence decomposes into endemic, autoregressive and neighbourhood components. The spatial dependencies among areas are adjusted based on actual connectivity through mobile network data. We also took into account other important factors such as international mobility, vaccination coverage, population size and the stringency of restriction measures. RESULTS: The results demonstrate the aggravating effect of international travel on the incidence, and simulated counterfactual scenarios further stress the alleviating impact of a reduction in national and international travel on epidemic growth. It is also clear that local transmission contributed the most during 2021, and municipalities with a larger population tended to attract a higher number of cases from neighboring areas. CONCLUSIONS: Although transmission between municipalities was observed, local transmission was dominant. We highlight the positive association between the mobility data and the infection spread over time. Our study provides insight to assist health authorities in decision-making, particularly when the disease is airborne and therefore likely influenced by human movement.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiología , Bélgica/epidemiología , Viaje
20.
Bull Math Biol ; 85(6): 54, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166513

RESUMEN

Metapopulation models have been a popular tool for the study of epidemic spread over a network of highly populated nodes (cities, provinces, countries) and have been extensively used in the context of the ongoing COVID-19 pandemic. In the present work, we revisit such a model, bearing a particular case example in mind, namely that of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e., between the first and second pandemic waves). Our aim is to consider the possibility of incorporation of mobility across the province nodes focusing on mobile-phone time-dependent data, but also discussing the comparison for our case example with a gravity model, as well as with the dynamics in the absence of mobility. Our main finding is that mobility is key toward a quantitative understanding of the emergence of the second wave of the pandemic and that the most accurate way to capture it involves dynamic (rather than static) inclusion of time-dependent mobility matrices based on cell-phone data. Alternatives bearing no mobility are unable to capture the trends revealed by the data in the context of the metapopulation model considered herein.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Modelos Biológicos , Conceptos Matemáticos , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA