Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Genet ; 105(3): 340-342, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37994112

RESUMEN

We studied a patient with a severe phenotype carrying two GNB5 variants: c.514delT from the unaffected heterozygous mother and c.628-6G>A from the unaffected homozygous father. Functional genomics studies showed that parents express 50% (nonsense-mediated decay, NMD) of the RNA/protein while the patient does not produce enough protein for normal development.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , ARN , Femenino , Humanos , Alelos , ARN Mensajero/genética , Madres , Genómica , Degradación de ARNm Mediada por Codón sin Sentido , Subunidades beta de la Proteína de Unión al GTP/genética
2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887175

RESUMEN

Oculocutaneous albinism is an autosomal recessive disorder characterized by the presence of typical ocular features, such as foveal hypoplasia, iris translucency, hypopigmented fundus oculi and reduced pigmentation of skin and hair. Albino patients can show significant clinical variability; some individuals can present with only mild depigmentation and subtle ocular changes. Here, we provide a retrospective review of the standardized clinical charts of patients firstly addressed for evaluation of foveal hypoplasia and slightly subnormal visual acuity, whose diagnosis of albinism was achieved only after extensive phenotypic and genotypic characterization. Our report corroborates the pathogenicity of the two common TYR polymorphisms p.(Arg402Gln) and p.(Ser192Tyr) when both are located in trans with a pathogenic TYR variant and aims to expand the phenotypic spectrum of albinism in order to increase the detection rate of the albino phenotype. Our data also suggest that isolated foveal hypoplasia should be considered a clinical sign instead of a definitive diagnosis of an isolated clinical entity, and we recommend deep phenotypic and molecular characterization in such patients to achieve a proper diagnosis.


Asunto(s)
Albinismo Oculocutáneo , Albinismo , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , Albinismo Oculocutáneo/patología , Enfermedades Hereditarias del Ojo , Fóvea Central/anomalías , Humanos , Nistagmo Congénito , Trastornos de la Visión/diagnóstico , Agudeza Visual
3.
Clin Genet ; 92(1): 34-44, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27859054

RESUMEN

Alport syndrome (ATS) is a genetically heterogeneous nephropathy with considerable phenotypic variability and different transmission patterns, including monogenic (X-linked/autosomal) and digenic inheritance (DI). Here we present a new series of families with DI and we discuss the consequences for genetic counseling and risk assessment. Out of five families harboring variants in more than one COL4 gene detected by next generation sequencing (NGS), minigene-splicing assay allowed us to identify four as true digenic. Two families showed COL4A3/A4 mutations in cis, mimicking an autosomal dominant inheritance with a more severe phenotype and one showed COL4A3/A4 mutations in trans, mimicking an autosomal recessive inheritance with a less severe phenotype. In a fourth family, a de novo mutation (COL4A5) combined with an inherited mutation (COL4A3) triggered a more severe phenotype. A fifth family, predicted digenic on the basis of silico tools, rather showed monogenic X-linked inheritance due to a hypomorphic mutation, in accordance with a milder phenotype. In conclusion, this study highlights the impact of DI in ATS and explains the associated atypical presentations. More complex inheritance should be therefore considered when reviewing prognosis and recurrence risks. On the other side, these findings emphasize the importance to accompany NGS with splicing assays in order to avoid erroneous identification of at risk members.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Herencia Multifactorial/genética , Nefritis Hereditaria/genética , Adulto , Anciano , Femenino , Genes Ligados a X , Asesoramiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Nefritis Hereditaria/fisiopatología , Linaje , Medición de Riesgo
4.
Genesis ; 52(10): 864-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044731

RESUMEN

Glial cells missing (Gcm) is the primary regulator of glial cell fate in Drosophila. Gcm belongs to a small family of transcriptional regulators involved in fundamental developmental processes found in diverse animal phyla including vertebrates. Gcm proteins contain the highly conserved DNA-binding GCM domain, which recognizes an octamer DNA sequence. To date, studies in Drosophila have primarily relied on gcm alleles caused by P-element induced DNA deletions at the gcm locus, as well as a null allele caused by a single base pair substitution in the GCM domain that completely abolishes DNA binding. Here I characterize two hypomorphic missense alleles of gcm with intermediate glial cells missing phenotypes. In embryos homozygous for either of these gcm alleles the number of glial cells in the central nervous cystem (CNS) is reduced approximately in half. Both alleles have single amino acid changes in the GCM domain. These results suggest that Gcm protein activities in these mutant alleles have been attenuated such that they are operating at threshold levels, and trigger glial cell differentiation in neural precursors in the CNS in a stochastic fashion. These hypomorphic alleles provide additional genetic resources for understanding Gcm functions and structure in Drosophila and other species.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Mutación Missense , Neuroglía/metabolismo , Factores de Transcripción/genética , Alelos , Animales , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Neuroglía/citología , Factores de Transcripción/metabolismo
5.
Nephrol Dial Transplant ; 29(4): 783-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24523358

RESUMEN

BACKGROUND: NFE2-related factor 2 (Nrf2) is a master regulatory transcription factor for antioxidant genes. Inhibition of its adaptor protein, Kelch-like ECH-associated protein 1 (Keap1), activates Nrf2. Podocyte injury triggers the progressive deterioration of glomerular damage toward glomerulosclerosis. We examined whether modulation of the Keap1-Nrf2 system has an impact on this process. METHODS: Nrf2 null-mutant (KO) and Keap1 hypomorphic knockdown (KD) mice were crossed with NEP25 mice, in which podocyte-specific injury can be induced by an immunotoxin. RESULTS: Thiobarbituric acid reactive substances, 8-hydroxydeoxyguanosine and phosphorylated JNK were increased in the injured NEP25 kidney. Real-time PCR revealed that Keap1 KD upregulated Nrf2 target genes, including Gclc, Gclm, Gstp1, Gstp2 and Nqo1 in the glomerulus. However, podocyte injury did not upregulate these genes in Keap1 wild-type mice, nor did it further increase the expression of those genes in Keap1 KD mice. Three weeks after the induction of podocyte injury, glomerulosclerosis was considerably more attenuated in Keap1 KD mice than in control mice (median sclerosis index, 0.27 versus 3.03, on a 0-4 scale). Keap1 KD mice also showed considerably preserved nephrin staining (median index, 6.76 versus 0.91, on a 0-8 scale) and decreased glomeruli containing desmin-positive injured podocytes (median percentage, 24.5% versus 85.8%), along with a decrease in mRNAs for Fn1, Tgfb1, Col4a4 and Col1a2. CONCLUSIONS: Thus, podocyte injury cannot effectively activate Nrf2, but Nrf2 activation by Keap1 knockdown attenuates glomerulosclerosis. These results indicate that the Nrf2-Keap1 system is a promising drug target for the treatment of chronic kidney diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Anticuerpos Monoclonales/toxicidad , Proteínas del Citoesqueleto/genética , ADN/genética , Regulación de la Expresión Génica , Glomeruloesclerosis Focal y Segmentaria/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Alelos , Animales , Antioxidantes/farmacología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/biosíntesis , Modelos Animales de Enfermedad , Exotoxinas/toxicidad , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Inmunotoxinas , Proteína 1 Asociada A ECH Tipo Kelch , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Ratones Mutantes , Factor 2 Relacionado con NF-E2/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Methods Mol Biol ; 2799: 79-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727904

RESUMEN

The analysis of rare NMDAR gene variants in mice, coupled with a fundamental understanding of NMDAR function, plays a crucial role in achieving therapeutic success when addressing NMDAR dysfunctions in human patients. For the generation of such NMDAR mouse models, a basic knowledge of receptor structure, along with skills in database sequence analysis, cloning in E. coli, genetic manipulation of embryonic stem (ES) cells, and ultimately the genetic modification of mouse embryos, is essential. Primarily, this chapter will focus on the design and synthesis of NMDAR gene-targeting vectors that can be used successfully for the genetic manipulation of mice. We will outline the core principles of the design and synthesis of a gene targeting vector that facilitates the introduction of single-point mutations in NMDAR-encoding genes in mice. The transformation of ES cells, selection of positive ES cell colonies, manipulation of mouse embryos, and genotyping strategies will be described briefly.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Animales , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Células Madre Embrionarias/metabolismo , Marcación de Gen/métodos , Vectores Genéticos/genética
7.
Hum Mutat ; 34(11): 1486-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24000151

RESUMEN

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by stereotyped missense mutations in NOTCH3. Whether these mutations lead to the CADASIL phenotype via a neomorphic effect, or rather by a hypomorphic effect, is subject of debate. Here, we report two novel NOTCH3 mutations, both leading to a premature stop codon with predicted loss of NOTCH3 function. The first mutation, c.307C>T, p.Arg103*, was detected in two brothers aged 50 and 55 years, with a brain MRI and skin biopsy incompatible with CADASIL. The other mutation was found in a 40-year-old CADASIL patient compound heterozygous for a pathogenic NOTCH3 mutation (c.2129A>G, p.Tyr710Cys) and an intragenic frameshift deletion. The deletion was inherited from his father, who did not have the skin biopsy abnormalities seen in CADASIL patients. These individuals with rare NOTCH3 mutations indicate that hypomorphic NOTCH3 alleles do not cause CADASIL.


Asunto(s)
Alelos , CADASIL/diagnóstico , CADASIL/genética , Fenotipo , Receptores Notch/genética , Adulto , Encéfalo/patología , Análisis Mutacional de ADN , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Linaje , Receptor Notch3 , Eliminación de Secuencia
8.
Cancers (Basel) ; 15(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37760565

RESUMEN

MTBP is implicated in cell cycle progression, DNA replication, and cancer metastasis. However, the function of MTBP remains enigmatic and is dependent on cellular contexts and its cellular localization. To understand the in vivo physiological role of MTBP, it is important to generate Mtbp knockout mice. However, complete deletion of the Mtbp gene in mice results in early embryonic lethality, while its heterozygous deletion shows modest biological phenotypes, including enhanced cancer metastasis. To overcome this and better characterize the in vivo physiological function of MTBP, we, for the first time, generated mice that carry an Mtbp hypomorphic allele (MtbpH) in which Mtbp protein is expressed at approximately 30% of that in the wild-type allele. We treated wild-type, Mtbp+/-, and MtbpH/- mice with a liver carcinogen, diethylnitrosamine (DEN), and found that the MtbpH/- mice showed worse overall survival when compared to the wild-type mice. Consistent with previous reports using human liver cancer cells, mouse embryonic fibroblasts (MEFs) from the MtbpH/- mice showed an increase in the nuclear localization of p-Erk1/2 and migratory potential. Thus, MtbpH/- mice and cells from MtbpH/- mice are valuable to understand the in vivo physiological role of Mtbp and validate the diverse functions of MTBP that have been observed in human cells.

9.
Genes Brain Behav ; 19(4): e12612, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31605437

RESUMEN

Mutations in the voltage-gated sodium channel gene SCN8A cause a broad range of human diseases, including epilepsy, intellectual disability, and ataxia. Here we describe three mouse lines on the C57BL/6J background with novel, overlapping mutations in the Scn8a DIIS4 voltage sensor: an in-frame 9 bp deletion (Δ9), an in-frame 3 bp insertion (∇3) and a 35 bp deletion that results in a frameshift and the generation of a null allele (Δ35). Scn8a Δ9/+ and Scn8a ∇3/+ heterozygous mutants display subtle motor deficits, reduced acoustic startle response, and are resistant to induced seizures, suggesting that these mutations reduce activity of the Scn8a channel protein, Nav 1.6. Heterozygous Scn8a Δ35/+ mutants show no alterations in motor function or acoustic startle response, but are resistant to induced seizures. Homozygous mutants from each line exhibit premature lethality and severe motor impairments, ranging from uncoordinated gait with tremor (Δ9 and ∇3) to loss of hindlimb control (Δ35). Scn8a Δ9/Δ9 and Scn8a ∇3/∇3 homozygous mutants also exhibit impaired nerve conduction velocity, while normal nerve conduction was observed in Scn8a Δ35/Δ35 homozygous mice. Our results suggest that hypomorphic mutations that reduce Nav 1.6 activity will likely result in different clinical phenotypes compared to null alleles. These three mouse lines represent a valuable opportunity to examine the phenotypic impacts of hypomorphic and null Scn8a mutations without the confound of strain-specific differences.


Asunto(s)
Movimiento , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Potenciales de Acción , Animales , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/química , Fenotipo , Dominios Proteicos
10.
Aging Cell ; 18(3): e12949, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920112

RESUMEN

In mutant mice, reduced levels of Klotho promoted high levels of active vitamin D in the serum. Genetic or dietary manipulations that diminished active vitamin D alleviated aging-related phenotypes caused by Klotho down-regulation. The hypomorphic Klotho [kl/kl] allele that decreases Klotho expression in C3H, BALB/c, 129, and C57BL/6 genetic backgrounds substantially increases 1,25(OH)2D3 levels in the sera of susceptible C3H, BALB/c, and 129, but not C57BL/6 mice. This may be attributed to increased basal expression of Cyp24a1 in C57BL/6 mice, which promotes inactivation of 1,25(OH)2D3. Decreased expression of Cyp24a1 in susceptible strains was associated with genetic alterations in noncoding regions of Cyp24a1 gene, which were strongly reminiscent of super-enhancers that regulate gene expression. These observations suggest that higher basal expression of an enzyme required for catabolizing vitamin D renders B6-kl/kl mice less susceptible to changes in Klotho expression, providing a plausible explanation for the lack of aging phenotypes on C57BL/6 strain.


Asunto(s)
Envejecimiento/genética , Glucuronidasa/genética , Vitamina D3 24-Hidroxilasa/genética , Animales , Glucuronidasa/metabolismo , Proteínas Klotho , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fenotipo , Vitamina D3 24-Hidroxilasa/metabolismo
11.
Aging (Albany NY) ; 11(14): 5246-5257, 2019 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-31386628

RESUMEN

Circulating Klotho peptide hormone has anti-aging activity and affects tissue maintenance. Hypomorphic mutant Klotho [kl/kl] mice on C57BL/6xC3H, BALB/c and 129 genetic backgrounds, show decreased Klotho expression that correlate with accelerated aging including pre-mature death due to abnormally high levels of serum vitamin D. These mice also show multiple impairments in the immune system. However, it remains unresolved if the defects in the immune system stem from decreased Klotho expression or high vitamin D levels in the serum. Transfer of the kl/kl allele to pure C57BL/6 genetic background [B6-kl/kl] significantly reduced expression of Klotho at all ages. Surprisingly, B6-kl/kl mice showed normalized serum vitamin D levels, amelioration of severe aging-related phenotypes and normal lifespan. This paper reports a detailed analysis of the immune system in B6-kl/kl mice in the absence of detrimental levels of serum vitamin D. Remarkably, the data reveal that in the absence of overt systemic stress, such as abnormally high vitamin D levels, reduced expression of Klotho does not have a major effect on the generation and maintenance of the immune system.


Asunto(s)
Médula Ósea/inmunología , Glucuronidasa/inmunología , Glucuronidasa/metabolismo , Timo/inmunología , Envejecimiento , Animales , Proteínas Klotho , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Vitamina D
12.
Methods Mol Biol ; 1677: 201-230, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28986875

RESUMEN

For the genetic alterations of NMDA receptor (NMDAR) properties like Ca2+-permeability or voltage-dependent gating in mice and for the experimental analysis of nonsense or missense mutations that were identified in human patients, single nucleotide mutations have to be introduced into the germ line of mice (Burnashev and Szepetowski, Curr Opin Pharmacol 20:73-82, 2015; Endele et al., Nat Genet 42:1021-1026, 2010). This can be done with very high precision by the well-established method of gene replacement, which makes use of homologous recombination in pluripotent embryonic stem (ES) cells of mice. The homologous recombination at NMDAR subunit genes (Grin; for glutamate receptor ionotropic NMDAR subtype) has to be performed by targeting vectors, also called replacement vectors. The targeting vector should encode part of the gene for the NMDAR subunit, the NMDAR mutation, and a removable selection maker. In these days, the targeting vector can be precisely designed using DNA sequences from public databases. The assembly of the vector is then done from isogenic NMDAR gene fragments cloned in bacterial artificial chromosomes (BACs) using "high fidelity" long-range PCR reactions. During these PCR reactions, the NMDAR mutations are introduced into the cloned NMDAR gene fragments of the targeting vector. Finally, the targeting vector is used for homologous recombination in mouse ES cells. Positive ES cell clones which have the correct mutation have to be selected and are then used for blastocyst injection to generate chimeric mice that hopefully transmit the Grin gene targeted ES cells to their offspring. In the first offspring generation of the founder (F1), some animals will be heterozygous for the targeted NMDAR gene mutation. In order to regulate the expression of NMDAR mutations, it is important to keep the targeted NMDAR mutation under conditional control. Here, we describe a general method how those conditionally controlled NMDAR mutations can be engraved into the germ line of mice as hypomorphic Grin alleles. By breeding these hypomorphic Grin gene targeted mice with Cre recombinase expressing mice, the hypomorphic Grin allele can be activated at specific time points in specific cell types, and the function of the mutated NMDAR can be analyzed in these - so called - conditional mouse models. In this method chapter, we describe in detail the different methodical steps for successful gene targeting and generation of conditional NMDAR mutant mouse lines. Within the last 20 years, several students in our Department of Molecular Neurobiology in Heidelberg used these techniques several times to generate different mouse lines with mutated NMDARs.


Asunto(s)
Receptores de N-Metil-D-Aspartato/genética , Alelos , Animales , Blastocisto/metabolismo , Southern Blotting , Cromosomas Artificiales Bacterianos , Células Madre Embrionarias/metabolismo , Marcación de Gen , Vectores Genéticos/genética , Genotipo , Humanos , Integrasas/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación
13.
G3 (Bethesda) ; 4(5): 885-90, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24637350

RESUMEN

The functional redundancy of the three mammalian Golgi-localized, γ-ear-containing, ADP-ribosylation factor-binding proteins (GGAs) was addressed in a previous study. Using insertional mutagenesis, we found that Gga1 or Gga3 homozygous knockout mice were for the most part normal, whereas mice homozygous for two different Gga2 gene-trap alleles exhibited either embryonic or neonatal lethality in the C57BL/6 background, depending on the source of the vector utilized (Byg vs. Tigm, respectively). We now show that the Byg strain harbors a disrupted Gga2 allele that is hypomorphic, indicating that the Byg lethality is attributable to a mechanism independent of GGA2. This is in contrast to the Tigm Gga2 allele, which is a true knockout and establishes a role for GGA2 during the neonatal period. Placement of the Tigm Gga2 allele into the C57BL6/Ola129Sv mixed background results in a lower incidence of neonatal lethality, showing the importance of genetic background in determining the requirement for GGA2 during this period. The Gga2(-/-) mice that survive have reduced body weight at birth and this runted phenotype is maintained through adulthood.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Genes Letales , Alelos , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA