Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(11): e2305746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941496

RESUMEN

Redox-induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi-interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2 gas, a reaction pathway of CuO → monoclinic m-Cu4 O3 → Cu2 O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2 O/m-Cu4 O3 interface shows a diffuse-type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m-Cu4 O3 /CuO transformation. Together with atomistic modeling, it is shown that such a multi-interface transformation results from the surface-reaction-induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2 O and m-Cu4 O3 , and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.

2.
Small ; : e2302455, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199132

RESUMEN

The optoelectronic signatures of free-standing few-atomic-layer black phosphorus nanoflakes are analyzed by in situ transmission electron microscopy (TEM). As compared to other 2D materials, the band gap of black phosphorus (BP) is related directly to multiple thicknesses and can be tuned by nanoflake thickness and strain. The photocurrent measurements with the TEM show a stable response to infrared light illumination and change of nanoflakes band gap with deformation while pressing them between two electrodes assembled in the microscope. The photocurrent spectra of an 8- and a 6-layer BP nanoflake samples are comparatively measured. Density functional theory (DFT) calculations are performed to identify the band structure changes of BP during deformations. The results should help to find the best pathways for BP smart band gap engineering via tuning the number of material atomic layers and programmed deformations to promote future optoelectronic applications.

3.
Small ; 19(49): e2303872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612798

RESUMEN

Nanocrystals play a key role in the modern energy, catalysis, semiconductor, and biology industries due to their unique structures and performances. However, controllable fabrication of ideal nanocrystals with the desired structures and properties is still challenging, which needs a deep understanding of their nucleation and growth process. Here, the research on nucleation and growth of nanocrystals studied by in situ transmission electron microscopy (TEM) is reviewed, mainly focusing on the atomic migration dynamics, interface evolution, and structure transformation. In addition, the challenges in the study of nanocrystal growth by TEM are discussed and the perspective on the future development of advanced in situ TEM techniques is provided. It is hoped that the review can give a deep insight into the nanocrystal nucleation and growth process, and further contribute to the rational design and precise fabrication of high-performance functional nanocrystals.

4.
Small ; 19(41): e2301415, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287411

RESUMEN

Carbonaceous materials are promising sodium-ion battery anodes. Improving their performance requires a detailed understanding of the ion transport in these materials, some important aspects of which are still under debate. In this work, nitrogen-doped porous hollow carbon spheres (N-PHCSs) are employed as a model system for operando analysis of sodium storage behavior in a commercial liquid electrolyte at the nanoscale. By combining the ex situ characterization at different states of charge with operando transmission electron microscopy experiments, it is found that a solvated ionic layer forms on the surface of N-PHCSs at the beginning of sodiation, followed by the irreversible shell expansion due to the solid-electrolyte interphase (SEI) formation and subsequent storage of Na(0) within the porous carbon shell. This shows that binding between Na(0) and C creates a Schottky junction making Na deposition inside the spheres more energetically favorable at low current densities. During sodiation, the SEI fills the gap between N-PHCSs, binding spheres together and facilitating the sodium ions' transport toward the current collector and subsequent plating underneath the electrode. The N-PHCSs layer acts as a protective layer between the electrolyte and the current collector, suppressing the possible growth of dendrites at the anode.

5.
Small ; 18(19): e2200913, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35411673

RESUMEN

Direct atomic-scale observation of the local phase transition in transition metal dichalcogenides (TMDCs) is critically required to carry out in-depth studies of their atomic structures and electronic features. However, the structural aspects including crystal symmetries tend to be unclear and unintuitive in real-time monitoring of the phase transition process. Herein, by using in situ transmission electron microscopy, information about the phase transition mechanism of MoTe2 from hexagonal structure (2H phase) to monoclinic structure (1T' phase) driven by sublimation of Te atoms after a spike annealing is obtained directly. Furthermore, with the control of Te atom sublimation by modulating the hexagonal boron nitride (h-BN) coverage in the desired area, the lateral 1T'-enriched MoTe2 /2H MoTe2 homojunction can be one-step constructed via an annealing treatment. Owing to the gradient bandgap provided by 1T'-enriched MoTe2 and 2H MoTe2 , the photodetector composed of the 1T'-enriched MoTe2 /2H MoTe2 homojunction shows fast photoresponse and ten times larger photocurrents than that consisting of a pure 2H MoTe2 channel. The study reveals a route to improve the performance of optoelectronic and electronic devices based on TMDCs with both semiconducting and semimetallic phases.

6.
Microsc Microanal ; 28(1): 53-60, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35177141

RESUMEN

In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid­liquid reactions. However, there are challenges to observe the early stages of spontaneous solid­liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows.

7.
Small ; 14(52): e1803108, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30397995

RESUMEN

Nonuniform and highly localized Li dendrites are known to cause deleterious and, in many cases, catastrophic effects on the performance of rechargeable Li batteries. However, the mechanisms of cathode failures upon contact with Li metal are far from clear. In this study, using in situ transmission electron microscopy, the interaction of Li metal with well-defined, epitaxial thin films of LiCoO2 , the most widely used cathode material, is directly visualized at an atomic scale. It is shown that a spontaneous and prompt chemical reaction is triggered once Li contact is made, leading to expansion and pulverization of LiCoO2 and ending with the final reaction products of Li2 O and Co metal. A topotactic phase transition is identified close to the reaction front, resulting in the formation of CoO as a metastable intermediate. Dynamic structural and chemical imaging, in combination with ab initio simulations, reveal that a high density of grain and antiphase boundaries is formed at the reaction front, which are critical for enabling the short-range topotactic reactions and long-range Li propagation. The fundamental insights are of general importance in mitigating Li dendrites related issues and guiding the design principle for more robust energy materials.

8.
Nano Lett ; 17(5): 2953-2958, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418255

RESUMEN

Wet chemical etching is a key process in fabricating silicon (Si) nanostructures. Currently, wet etching of Si is proposed to occur through the reaction of surface Si atoms with etchant molecules, forming etch intermediates that dissolve directly into the bulk etchant solution. Here, using in situ transmission electron microscopy (TEM), we follow the nanoscale wet etch dynamics of amorphous Si (a-Si) nanopillars in real-time and show that intermediates generated during alkaline wet etching first aggregate as nanoclusters on the Si surface and then detach from the surface before dissolving in the etchant solution. Molecular dynamics simulations reveal that the molecules of etch intermediates remain weakly bound to the hydroxylated Si surface during the etching and aggregate into nanoclusters via surface diffusion instead of directly diffusing into the etchant solution. We confirmed this model experimentally by suppressing the formation of nanoclusters of etch intermediates on the Si surfaces by shielding the hydroxylated Si sites with large ions. These results suggest that the interaction of etch intermediates with etching surfaces controls the solubility of reaction intermediates and is an important parameter in fabricating densely packed clean 3D nanostructures for future generation microelectronics.

9.
Nano Lett ; 16(8): 5221-7, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27454869

RESUMEN

The structural defects that inevitably exist in real-world carbon nanotubes (CNTs) are generally considered undesirable because they break the structural perfection and may result in drastically degraded CNT properties. On the other hand, the deliberate defect introduction can provide a possibility to tailor the tube mechanical properties. Herein, we present a fully controllable technique to handle defects by using in situ transmission electron microscopy (TEM). Young's modulus, quality factor of the resonation and tensile strength of CNTs can be controllably, reversibly, and repeatedly tuned. Parallel high-resolution visualizing of structural defects suggests that the property tuning cycles are primarily attributed to the reversible conversion of defects at the atomic scale: the defects are created in the form of vacancies and interstitials under electron irradiation, and they vanish through the recombination via current-induced annealing. For applications, such as reversible frequency-tuned CNT resonators, this defect-engineering technique is demonstrated to be uniquely precise; the frequency may be tuned with 0.1%/min accuracy, improved by 1 order of magnitude compared with the existing approaches. We believe that these results will be highly valuable in a variety of property-tunable CNT-based composites and devices.

10.
ACS Appl Mater Interfaces ; 16(23): 30506-30520, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805354

RESUMEN

Low-dimensional materials, such as MoS2, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale in situ transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion (Wadh) between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS2 films deposited on Si scanning probe tips. A customized TEM/AFM nanoindenter permitted high-resolution imaging and force measurements in situ. The Wadh values for nanocrystalline and nominally amorphous MoS2 were 604 ± 323 mJ/m2 and 932 ± 647 mJ/m2, respectively, significantly higher than previously reported values for mechanically exfoliated MoS2 single crystals. Closely matched molecular dynamics (MD) simulations show that these high values can be explained by bonding between the opposing surfaces at defects such as grain boundaries. Simulations show that as grain size decreases, the number of bonds formed, the Wadh and its variability all increase, further supporting that interfacial covalent bond formation causes high adhesion. In some cases, sliding between delaminated MoS2 flakes during separation is observed, which further increases the Wadh and the range of adhesive interaction. These results indicate that for low adhesion, the MoS2 grains should be large relative to the contact area to limit the opportunity for bonding, whereas small grains may be beneficial, where high adhesion is needed to prevent device delamination in flexible systems.

11.
ACS Nano ; 17(13): 12483-12498, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326660

RESUMEN

Ternary metal sulfides (TMSs), endowed with the synergistic effect of their respective binary counterparts, hold great promise as anode candidates for boosting sodium storage performance. Their fundamental sodium storage mechanisms associated with dynamic structural evolution and reaction kinetics, however, have not been fully comprehended. To enhance the electrochemical performance of TMS anodes in sodium-ion batteries (SIBs), it is of critical importance to gain a better mechanistic understanding of their dynamic electrochemical processes during live (de)sodiation cycling. Herein, taking BiSbS3 anode as a representative paradigm, its real-time sodium storage mechanisms down to the atomic scale during the (de)sodiation cycling are systematically elucidated through in situ transmission electron microscopy. Previously unexplored multiple phase transformations involving intercalation, two-step conversion, and two-step alloying reactions are explicitly revealed during sodiation, in which newly formed Na2BiSbS4 and Na2BiSb are respectively identified as intermediate phases of the conversion and alloying reactions. Impressively, the final sodiation products of Na6BiSb and Na2S can recover to the original BiSbS3 phase upon desodiation, and afterward, a reversible phase transformation can be established between BiSbS3 and Na6BiSb, where the BiSb as an individual phase (rather than respective Bi and Sb phases) participates in reactions. These findings are further verified by operando X-ray diffraction, density functional theory calculations, and electrochemical tests. Our work provides valuable insights into the mechanistic understanding of sodium storage mechanisms in TMS anodes and important implications for their performance optimization toward high-performance SIBs.

12.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572089

RESUMEN

We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.

13.
Materials (Basel) ; 13(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384649

RESUMEN

Despite its scarcity in terrestrial life, helium effects on microstructure evolution and thermo-mechanical properties can have a significant impact on the operation and lifetime of applications, including: advanced structural steels in fast fission reactors, plasma facing and structural materials in fusion devices, spallation neutron target designs, energetic alpha emissions in actinides, helium precipitation in tritium-containing materials, and nuclear waste materials. The small size of a helium atom combined with its near insolubility in almost every solid makes the helium-solid interaction extremely complex over multiple length and time scales. This Special Issue, "Radiation Damage in Materials-Helium Effects", contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.

14.
Adv Mater ; 30(4)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29210479

RESUMEN

The electrode materials conducive to conversion reactions undergo large volume change in cycles which restrict their further development. It has been demonstrated that incorporation of a third element into metal oxides can improve the cycling stability while the mechanism remains unknown. Here, an in situ and ex situ electron microscopy investigation of structural evolutions of Cu-substituted Co3 O4 supplemented by first-principles calculations is reported to reveal the mechanism. An interconnected framework of ultrathin metallic copper formed provides a high conductivity backbone and cohesive support to accommodate the volume change and has a cube-on-cube orientation relationship with Li2 O. In charge, a portion of Cu metal is oxidized to CuO, which maintains a cube-on-cube orientation relationship with Cu. The Co metal and oxides remain as nanoclusters (less than 5 nm) thus active in subsequent cycles. This adaptive architecture accommodates the formation of Li2 O in the discharge cycle and underpins the catalytic activity of Li2 O decomposition in the charge cycle.

15.
Microsc Res Tech ; 79(7): 615-24, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27145192

RESUMEN

Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA