Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 202: 105917, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879319

RESUMEN

Owing to their beneficial functional capabilities, essential oils were largely used. However, their low aqueous solubility, instability, and high volatility urged scientists to their encapsulation with cyclodextrins (CDs) to tackle their shortcomings. In this study, the co-precipitation method was used to prepare ß-CD/Eucalyptus globulus essential oil (EGEO) inclusion complexes (ICs). ß-CD/EGEO ICs were prepared at ratios (w:w) 1:2 and 1:4 with an encapsulation efficiency of 93 and 96%, respectively. The ICs characterization using the Fourier transform Infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction, Dynamic Light Scattering, and Laser Doppler Velocimetry confirmed the formation of ß-CD/EGEO ICs. The insecticidal activity of the free EGEO and ICs was explored and displayed that the complex ß-CD/EGEO 1:4 had the highest activity with the lowest LC50 against Ephestia kuehniella larvae (5.03 ± 1.16 mg/g) when compared to the free oil (8.38 ± 1.95 mg/g). Molecular docking simulations stipulated that the compound α-Bisabolene epoxide had the best docking score (ΔG = -7.4 Kcal/mol) against the selected insecticidal target α-amylase. Additionally, toxicity evaluation of the studied essential oil suggested that it could be safely used as a potent bioinsecticide as compared to chemical insecticides. This study reveals that the formation of ß-CD/EGEO ICs enhanced the oil activity and stability and could be a promising and safe tool to boost its application in food or pharmaceutical fields.


Asunto(s)
Eucalyptus , Insecticidas , Larva , Simulación del Acoplamiento Molecular , Aceites Volátiles , beta-Ciclodextrinas , Animales , Insecticidas/química , Insecticidas/farmacología , Larva/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Eucalyptus/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Escarabajos/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126058

RESUMEN

This study evaluates the antiproliferative potential of flavanones, chromanones and their spiro-1-pyrazoline derivatives as well as their inclusion complexes. The main goal was to determine the biological basis of molecular pro-apoptotic activities and the participation of reactive oxygen species (ROS) in shaping the cytotoxic properties of the tested conjugates. For this purpose, changes in mitochondrial potential and the necrotic/apoptotic cell fraction were analyzed. Testing with specific fluorescent probes found that ROS generation had a significant contribution to the biological anticancer activity of complexes of flavanone analogues. TT (thrombin time), PT (prothrombin time) and APTT (activated partial tromboplastin time) were used to evaluate the influence of the compounds on the extrinsic and intrinsic coagulation pathway. Hemolysis assays and microscopy studies were conducted to determine the effect of the compounds on RBCs.


Asunto(s)
Antineoplásicos , Apoptosis , Ciclodextrinas , Flavanonas , Especies Reactivas de Oxígeno , Humanos , Flavanonas/farmacología , Flavanonas/química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Especies Reactivas de Oxígeno/metabolismo , Ciclodextrinas/química , Ciclodextrinas/farmacología , Línea Celular Tumoral , Hemólisis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
3.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892075

RESUMEN

Cyclodextrins (CDs) are cyclic oligosaccharides able to form noncovalent water-soluble complexes useful in many different applications for the solubilization, delivery, and greater bioavailability of hydrophobic drugs. The complexation of 5-fluorouracil (5-FU) with natural or synthetic cyclodextrins permits the solubilization of this poorly soluble anticancer drug. In this theoretical work, the complexes between ß-CD and 5-FU are investigated using molecular mechanics (MM) and molecular dynamics (MD) simulations in water. The inclusion complexes are formed thanks to the favorable intermolecular interactions between ß-CD and 5-FU. Both 1:1 and 1:2 ß-CD/5-FU stoichiometries are investigated, providing insight into their interaction geometries and stability over time in water. In the 1:2 ß-CD/5-FU complexes, the intermolecular interactions affect the drug's mobility, suggesting a two-step release mechanism: a fast release for the more exposed and hydrated drug molecule, with greater freedom of movement near the ß-CD rims, and a slow one for the less-hydrated and well-encapsulated and confined drug. MD simulations study the intermolecular interactions between drugs and specific carriers at the atomistic level, suggesting a possible release mechanism and highlighting the role of the impact of the drug concentration on the kinetics process in water. A comparison with experimental data in the literature provides further insights.


Asunto(s)
Fluorouracilo , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Agua , beta-Ciclodextrinas , Fluorouracilo/química , beta-Ciclodextrinas/química , Agua/química , Solubilidad
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673967

RESUMEN

Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.


Asunto(s)
Antineoplásicos , Curcumina , Curcumina/análogos & derivados , Magnesio , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Curcumina/farmacología , Curcumina/química , Curcumina/farmacocinética , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Magnesio/química , Apoptosis/efectos de los fármacos , Femenino , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Movimiento Celular/efectos de los fármacos , Solubilidad , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Embrión de Pollo , Metaloproteinasa 9 de la Matriz/metabolismo
5.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893410

RESUMEN

In aqueous and solid media, 2-HP-ß/γ-CD inclusion complexes with poly aromatic hydrocarbon (PAH) Phenanthrene (PHN), Anthracene (ANT), Benz(a)pyrene (BaP), and Fluoranthene (FLT) were investigated for the first time. The inclusion complexes were characterized and investigated using fluorescence and 1HNMR spectroscopy. The most prevalent complexes consisting of both guests and hosts were those with a 1:1 guest-to-host ratio. The stability constants for the complexes of PHN with 2-HP-ß-CD and 2-HP-γ-CD were 85 ± 12 M-1 and 49 ± 29 M-1, respectively. Moreover, the stability constants were found to be 502 ± 46 M-1 and 289 ± 44 M-1 for the complexes of ANT with both hosts. The stability constants for the complexes of BaP with 2-HP-ß-CD and 2-HP-γ-CD were (1.5 ± 0.02) × 103 M-1 and (9.41 ± 0.03) × 103 M-1, respectively. The stability constant for the complexes of FLT with 2-HP-ß-CD was (1.06 ± 0.06) × 103 M-1. However, FLT was observed to form a weak complex with 2-HP-γ-CD. Molecular dynamic (MD) simulations were used to investigate the mechanism and mode of inclusion processes, and to monitor the atomic-level stability of these complexes. The analysis of MD trajectories demonstrated that all guests formed stable inclusion complexes with both hosts throughout the duration of the simulation time, confirming the experimental findings. However, the flexible Hydroxypropyl arms prevented the PAHs from being encapsulated within the cavity; however, a stable exclusion complex was observed. The main forces that influenced the complexation included van der Waals interactions, hydrophobic forces, and C-H⋯π interaction, which contribute to the stability of these complexes.

6.
Molecules ; 29(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064922

RESUMEN

The aim of this study was to obtain drinking yogurts enriched with ACTICOA cocoa powder (ACTICOA), its extract (EACTICOA) and pure phenolics, as well as their inclusion complexes with cyclodextrins and alginate-chitosan (A-Ch) capsules, and to evaluate the effects of these additives on the viability of lactic acid bacteria (LAB) and antioxidant properties of fresh yogurts and yogurts stored for 14 days at 4 °C. The application of cocoa phenolic compounds in free form and in the form of EACTICOA to yogurts resulted in the greatest increase in the concentration of phenolic compounds and a significant improvement in the antioxidant properties of the fortified products. The highest TPC was found in yogurts enriched with free quercetin (107.98 mg CE/g). Yogurt fortified with free gallic acid showed the highest ability to neutralize free radicals (EC50 = 2.74 mg/mg DPPH, EC50 = 5.40 mg/mg ABTS) and reduce ferric ions (183.48 µM Trolox/g). The enrichment of yogurts with the tested phenolic compounds preparations, especially in the form of encapsulates, did not affect the viability of LAB during storage.


Asunto(s)
Antioxidantes , Cacao , Lactobacillales , Fenoles , Yogur , Yogur/microbiología , Yogur/análisis , Antioxidantes/farmacología , Antioxidantes/química , Fenoles/análisis , Fenoles/farmacología , Fenoles/química , Cacao/química , Lactobacillales/crecimiento & desarrollo , Alimentos Fortificados/análisis , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cápsulas
7.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792106

RESUMEN

Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, we report a systematic study on the inclusion complexes of natural CDs (α-, ß-, and γ-CD) with a representative OPFR of DOPO using computational methods of molecular docking, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations. The binding modes and energetics of [host:guest] inclusion complexes were analyzed in details. α-CD was not able to form a complete inclusion complex with DOPO, and the center of mass distance [host:guest] distance amounted to 4-5 Å. ß-CD and γ-CD allowed for a deep insertion of DOPO into their hydrophobic cavities, and DOPO was able to frequently change its orientation within the γ-CD cavity. The energy decomposition analysis based on the dispersion-corrected density functional theory (sobEDAw) indicated that electrostatic, orbital, and dispersion contributions favored [host:guest] complexation, while the exchange-repulsion term showed the opposite. This work provides an in-depth understanding of using CD inclusion complexes in OPFRs formulations.

8.
J Sci Food Agric ; 104(11): 6584-6593, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38521988

RESUMEN

BACKGROUND: The biological functions of ferulic acid (FA) have garnered significant interest but its limited solubility and stability have led to low bioavailability. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD), with its distinctive hollow structure, offers the potential for encapsulating hydrophobic molecules. The formation of an inclusion complex between FA and HP-ß-CD may therefore be a viable approach to address the inherent limitations of FA. To investigate the underlying mechanism of the FA/HP-ß-CD inclusion complex formation, a combination of spectral analyses and computer simulation was employed. RESULTS: The disappearance of the characteristic peaks of FA in Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the formation of an inclusion complex between FA and HP-ß-CD. Thermogravimetry-derivative thermogravimetry (TG-DTG) studies demonstrated that the thermal stability of FA was enhanced due to the encapsulation of FA within HP-ß-CD. Molecular dynamics simulation also provided evidence that FA successfully penetrated the HP-ß-CD cavity, primarily driven by van der Waals interactions. The formation of the complex resulted in more compact HP-ß-CD structures. The bioavailability of FA was also strengthened through the formation of inclusion complexes with HP-ß-CD. CONCLUSIONS: The findings of this study have contributed to a deeper understanding of the interactions between FA and HP-ß-CD, potentially advancing a delivery system for FA and enhancing the bioavailability of insoluble active components. © 2024 Society of Chemical Industry.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Disponibilidad Biológica , Simulación por Computador , Ácidos Cumáricos , Solubilidad , Ácidos Cumáricos/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Termogravimetría
9.
Macromol Rapid Commun ; 44(16): e2300120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150605

RESUMEN

Fragrances are ubiquitously and extensively used in everyday life and several industrial applications, including perfumes, textiles, laundry formulations, hygiene household products, and food products. However, the intrinsic volatility of these small organic molecules leaves them particularly susceptible to fast depletion from a product or from the surface they have been applied to. Encapsulation is a very effective method to limit the loss of fragrance during their use and to sustain their release. This review gives an overview of the different materials and techniques used for the encapsulation of fragrances, scents, and aromas, as well as the methods used to characterize the resulting encapsulation systems, with a particular focus on cyclodextrins, polymer microcapsules, inorganic microcapsules, block copolymer micelles, and polymersomes for fragrance encapsulation, sustained release, and controlled release.


Asunto(s)
Odorantes , Perfumes , Micelas , Cápsulas , Polímeros
10.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240276

RESUMEN

Three novel biomaterials obtained via inclusion complexes of ß-cyclodextrin, 6-deoxi-6-amino-ß-cyclodextrin and epithelial growth factor grafted to 6-deoxi-6-amino-ß-cyclodextrin with polycaprolactone. Furthermore, some physicochemical, toxicological and absorption properties were predicted using bioinformatics tools. The electronic, geometrical and spectroscopical calculated properties agree with the properties obtained via experimental methods, explaining the behaviors observed in each case. The interaction energy was obtained, and its values were -60.6, -20.9 and -17.1 kcal/mol for ß-cyclodextrin/polycaprolactone followed by the 6-amino-ß-cyclodextrin-polycaprolactone complex and finally the complex of epithelial growth factor anchored to 6-deoxy-6-amino-ß-cyclodextrin/polycaprolactone. Additionally, the dipolar moments were calculated, achieving values of 3.2688, 5.9249 and 5.0998 Debye, respectively, and in addition the experimental wettability behavior of the studied materials has also been explained. It is important to note that the toxicological predictions suggested no mutagenic, tumorigenic or reproductive effects; moreover, an anti-inflammatory effect has been shown. Finally, the improvement in the cicatricial effect of the novel materials has been conveniently explained by comparing the poly-caprolactone data obtained in the experimental assessments.


Asunto(s)
Ciclodextrinas , Poliésteres , Péptidos y Proteínas de Señalización Intercelular , Solubilidad , 2-Hidroxipropil-beta-Ciclodextrina/química
11.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769299

RESUMEN

Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the disease, how to prevent and treat it, and to limit and hamper its global dissemination. Considering the above, the search for prophylactic approaches has led to a revolution in the reglementary pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way. Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being pursued. However, their physicochemical characteristics or reported adverse events have sometimes limited their use. Hence, nanotechnology has been employed to potentially overcome some of these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored, and the potential application of cyclodextrins to increase their promising application against COVID-19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.


Asunto(s)
COVID-19 , Ciclodextrinas , Humanos , Vacunas contra la COVID-19/uso terapéutico , Ciclodextrinas/farmacología , Ciclodextrinas/uso terapéutico , Ciclodextrinas/química , Reposicionamiento de Medicamentos , Antivirales/farmacología , Antivirales/uso terapéutico
12.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834247

RESUMEN

Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)-modified tripeptide RWR (LA-RWR) with ß-cyclodextrin (ß-CD) to form nano-inclusion complexes. The free cationic tripeptide region in the nano-inclusion complex provided high antibacterial activity, while ß-CD enhanced its biocompatibility. Compared with peptides (LA-RWR, LA-RWR-phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram-negative/Gram-positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano-inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non-included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.


Asunto(s)
Ciclodextrinas , Ácido Tióctico , Ciclodextrinas/química , Contención de Riesgos Biológicos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos , Bacterias , Pruebas de Sensibilidad Microbiana
13.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762289

RESUMEN

Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with ß/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the ß/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with ß/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).


Asunto(s)
Antimutagênicos , gamma-Ciclodextrinas , Femenino , Embarazo , Humanos , Suero Lácteo , Calostro , Proteína de Suero de Leche/farmacología , Péptidos/farmacología
14.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836807

RESUMEN

It is widely recognized that many active pharmaceutical ingredients (APIs) have a disagreeable taste that affects patient acceptability, particularly in children. Consequently, developing dosage forms with a masked taste has attracted a lot of interest. The application of cyclodextrins as pharmaceutical excipients is highly appreciated and well established, including their roles as drug delivery systems, solubilizers and absorption promoters, agents that improve drug stability, or even APIs. The first work describing the application of the taste-masking properties of CDs as pharmaceutical excipients was published in 2001. Since then, numerous studies have shown that these cyclic oligosaccharides can be effectively used for such purposes. Therefore, the aim of this review is to provide insight into studies in this area. To achieve this aim, a systematic evaluation was conducted, which resulted in the selection of 67 works representing both successful and unsuccessful works describing the application of CDs as taste-masking excipients. Particular attention has been given to the methods of evaluation of the taste-masking properties and the factors affecting the outcomes, such as the choice of the proper cyclodextrin or guest-host molar ratio. The conclusions of this review reveal that the application of CDs is not straightforward; nevertheless, this solution can be an effective, safe, and inexpensive method of taste masking for pharmaceutical purposes.


Asunto(s)
Ciclodextrinas , Excipientes , Niño , Humanos , Preparaciones Farmacéuticas , Excipientes/farmacología , Ciclodextrinas/farmacología , Gusto , Química Farmacéutica/métodos , Solubilidad
15.
Molecules ; 28(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36770803

RESUMEN

The inclusion complexes of cucurbit[n]uril, CB[n] (n = 6-8), with poly aromatic hydrocarbon (PAH) Benzo(a)Pyrene (BaP), and fluoranthene (FLT) were investigated carefully in aqueous media. Fluorescence and 1H NMR spectroscopy were used to characterize and investigate the inclusion complexes that were prepared in the aqueous media. The most predominant complexes of both guests with hosts were the 1:1 guest: host complexes. Stability constants of 2322 ± 547 M-1, 7281 ± 689 M-1, 3566 ± 473 M-1 were obtained for the complexes of BaP with CB[6], CB[7], and CB[8], respectively. On the other hand, stability constants of 5900.270 ± 326 M-1, 726.87 ± 78 M-1, 3327.059 ± 153 M-1 were obtained for the complexes of FLT with CB[6], CB[7], and CB[8], respectively. Molecular dynamic (MD) simulations were used to study the mode and mechanism of the inclusion process and to monitor the stability of these complexes in aqueous media at an atomistic level. Analysis of MD trajectories has shown that both BaP and FLT form stable inclusion complexes with CB[7] and CB[8] in aqueous media throughout the simulation time, subsequently corroborating the experimental results. Nevertheless, the small size of CB[6] prohibited the encapsulation of the two PAHs inside the cavity, but stable exclusion complex was observed between them. The main driving forces for the stability of these complexes are the hydrophobic forces, van der Waals interactions, electrostatic effect, the π····π and C-H···π interaction. These results suggest that BaP and FLT can form stable complexes with CB[n] (n = 6-8) in solution.

16.
Inflammopharmacology ; 31(6): 3047-3062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955785

RESUMEN

Curcuma longa extract and its marker curcuminoids have potential use in inflammatory conditions. However, curcuminoids solubility and bioavailability are major hindrances to their bioactivity. The current study investigated green extraction-based curcuminoids-enriched extract (CRE) prepared from C. longa and its cyclodextrin inclusion complexes, i.e., binary inclusion complexes (BC) and ternary inclusion complexes (TC), in complete Freund's adjuvant (CFA)-induced mice for their comparative anti-arthritic efficacy. CRE, BC, and TC (2.5 and 5 mg/kg) with the standard drug diclofenac sodium (13.5 mg/kg) were orally administered to mice for 4 weeks. Variations in body weight, hematological and biochemical parameters, along with gene expression analysis of arthritis biomarkers, were studied in animals. The histopathological analysis and radiographic examination of joints were also performed. CRE, BC and TC treatment significantly restored the arthritic index, histopathology and body weight changes. The concentration of C-reactive protein, rheumatoid factor and other liver function parameters were significantly recovered by curcuminoids formulations. The pro-inflammatory cytokines (NF-κB, COX-2, IL-6, IL-1ß, and TNF-α) gene expression was considerably (p < 0.001) downregulated, while on the other side, the anti-inflammatory genes IL-4 and IL-10 were upregulated by the use of CRE and its complexes. The concentration of antioxidant enzymes was considerably (P < 0.001) recovered by CRE, BC and TC with marked decrease in lipid peroxidation, erosion of bone, inflammation of joints and pannus formation in comparison to arthritic control animals. Therefore, it is concluded that green CRE and its cyclodextrin formulations with enhanced solubility could be considered as an applicable therapeutic choice to treat chronic polyarthritis.


Asunto(s)
Artritis Experimental , Ratones , Animales , Adyuvante de Freund , Artritis Experimental/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Oxidativo , Citocinas/metabolismo , Biomarcadores/metabolismo , Peso Corporal
17.
J Drug Deliv Sci Technol ; 81: 104229, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36776572

RESUMEN

The compound 3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione (IVS320) is a naphthoquinone with antifungal and antichagasic potential, which however has low aqueous solubility. To increase bioavailability, inclusion complexes with ß-cyclodextrin (ßCD) and methyl-ß-cyclodextrin (MßCD) were prepared by physical mixture (PM), kneading (KN) and rotary evaporation (RE), and their in vitro anti-SARS-CoV-2 and antichagasic potential was assessed. The formation of inclusion complexes led to a change in the physicochemical characteristics compared to IVS320 alone as well as a decrease in crystallinity degree that reached 74.44% for the IVS320-MßCD one prepared by RE. The IVS320 and IVS320-MßCD/RE system exhibited anti-SARS-CoV-2 activity, showing half maximal effective concentrations (EC50) of 0.47 and 1.22 µg/mL, respectively. Molecular docking simulation suggested IVS320 ability to interact with the SARS-CoV-2 viral protein. Finally, the highest antichagasic activity, expressed as percentage of Tripanosoma cruzi growth inhibition, was observed with IVS320-ßCD/KN (70%) and IVS320-MßCD/PM (72%), while IVS320 alone exhibited only approximately 48% inhibition at the highest concentration (100 µg/mL).

18.
AAPS PharmSciTech ; 24(8): 230, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964017

RESUMEN

The main components of Caesalpinia sappan L. (CS) are brazilin and brazilein, which show high potential in pharmacologic applications. However, these have been drastically limited by the poor water solubility and stability. The present study investigates the formation of inclusion complexes F1, F2, and F3 between CS and ß-cyclodextrin (ßCD), hydroxypropyl-ß-cyclodextrin (HPßCD), and methyl-ß-cyclodextrin (MßCD), respectively. These complexes were characterized by Fourier transform infrared spectroscopy (FT-IR). The results showed that the highest encapsulation efficiency and loading capacity of CS extract were 44.24% and 9.67%, respectively. The solubility and stability of CS extract were significantly increased through complexation in phase solubility and stability studies. The complexes F1-F3 showed mainly significant antibacterial activities on gram-positive bacteria pathogens causing mastitis. Moreover, the expression levels of COX-2 and iNOS were significantly decreased in LPS-induced inflammatory cells at concentrations of 50 and 100 µg/mL. In addition, treatment of complex F3 (CS/MßCD) in bovine endothelial cells remarkably increased the chemokine gene expression of CXCL3 and CXCL8, which were responsible for immune cell recruitment (9.92 to 11.17 and 8.23 to 9.51-fold relative to that of the LPS-treated group, respectively). This study provides a complete characterization of inclusion complexes between CS extract and ßCD, HPßCD, and MßCD for the first time, highlighting the impact of complex formation on the pharmacologic activities of bovine mastitis.


Asunto(s)
Caesalpinia , Ciclodextrinas , Mastitis Bovina , Animales , Bovinos , Femenino , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Espectroscopía Infrarroja por Transformada de Fourier , Mastitis Bovina/tratamiento farmacológico , Células Endoteliales , Lipopolisacáridos , Solubilidad
19.
AAPS PharmSciTech ; 24(5): 115, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160765

RESUMEN

The purpose of the study is to investigate the influence of sulfobutyl ether ß-cyclodextrin (SBE7-ß-CD) on the bioavailability of valsartan. Phase solubility investigations showed an AL type curve. The estimated apparent stability constant for valsartan SBE7-ß-CD is 427 ± 0.32 M-1. Inclusion complexes of valsartan SBE7-ß-CD in equal molar ratio were prepared by microwave irradiation technique. The process parameters were optimised with a central composite face design. Response surface graphs and contour plots showed how process factors affected drug content. The inclusion complexes prepared by optimising process variables are characterised. The DSC and X-ray diffraction confirm the formation of inclusion complexes and the drug's transition from a crystalline to an amorphous state. FTIR suggests hydrogen bonding between valsartan and SBE7-ß-CD. SEM showed changes in drug morphology and shape. The dissolution rate of the prepared SBE7-ß-CD complex using microwave irradiation was 2.85 times that of pure valsartan. The inclusion complex was formulated into tablet dosage forms F1 to F4. Furthermore, oral bioavailability studies in rats with tablet formulation F3 were carried out and compared to the marketed Diovan® tablet as a reference standard. The F3 tablet formulation exhibited significantly higher values of AUC0-∞ and Cmax than the reference. Finally, the microwave-irradiated valsartan SBE7-ß-CD inclusion complex converted into tablet dosage form may be a promising approach to increasing valsartan oral bioavailability.


Asunto(s)
Microondas , beta-Ciclodextrinas , Animales , Ratas , Disponibilidad Biológica , Valsartán
20.
Chemistry ; 28(58): e202201887, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35876711

RESUMEN

The neutral complex dichloro-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)-(4-trifluoro-methylphenyl)methyl]phosphonate} (p-cymene)-ruthenium(II) was encapsulated inside a self-assembled hexameric host obtained upon reaction of 2,8,14,20-tetra-undecyl-resorcin[4]arene and water. The formation of an inclusion complex was inferred from a combination of spectral measurements (MS, UV/Vis spectroscopy, 1 H and DOSY NMR). The 31 P and 19 F NMR spectra are consistent with motions of the ruthenium complex inside the self-assembled capsule. Molecular dynamics simulations carried out on the inclusion complex confirmed these intra-cavity movements and highlighted possible supramolecular interactions between the ruthenium first coordination sphere ligands and the inner part (aromatic rings) of the capsule. The embedded ruthenium complex was assessed in the catalytic oxidation (using NaIO4 as oxidant) of mixtures of three arylmethyl alcohols into the corresponding aldehydes. The reaction kinetics were shown to vary as a function of the substrates' size, with the oxidation rate varying in the order benzylalcohol >4-phenyl-benzylalcohol >9-anthracenemethanol. Control experiments realized in the absence of hexameric capsule did not allow any discrimination between the substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA