Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Anim Ecol ; 93(3): 267-280, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167802

RESUMEN

Individual body size distributions (ISD) within communities are remarkably consistent across habitats and spatiotemporal scales and can be represented by size spectra, which are described by a power law. The focus of size spectra analysis is to estimate the exponent ( λ ) of the power law. A common application of size spectra studies is to detect anthropogenic pressures. Many methods have been proposed for estimating λ most of which involve binning the data, counting the abundance within bins, and then fitting an ordinary least squares regression in log-log space. However, recent work has shown that binning procedures return biased estimates of λ compared to procedures that directly estimate λ using maximum likelihood estimation (MLE). While it is clear that MLE produces less biased estimates of site-specific λ's, it is less clear how this bias affects the ability to test for changes in λ across space and time, a common question in the ecological literature. Here, we used simulation to compare the ability of two normalised binning methods (equal logarithmic and log2 bins) and MLE to (1) recapture known values of λ , and (2) recapture parameters in a linear regression measuring the change in λ across a hypothetical environmental gradient. We also compared the methods using two previously published body size datasets across a natural temperature gradient and an anthropogenic pollution gradient. Maximum likelihood methods always performed better than common binning methods, which demonstrated consistent bias depending on the simulated values of λ . This bias carried over to the regressions, which were more accurate when λ was estimated using MLE compared to the binning procedures. Additionally, the variance in estimates using MLE methods is markedly reduced when compared to binning methods. The error induced by binning methods can be of similar magnitudes as the variation previously published in experimental and observational studies, bringing into question the effect sizes of previously published results. However, while the methods produced different regression slope estimates, they were in qualitative agreement on the sign of those slopes (i.e. all negative or all positive). Our results provide further support for the direct estimation of λ and its relative variation across environmental gradients using MLE over the more common methods of binning.


Asunto(s)
Ecosistema , Animales , Simulación por Computador , Funciones de Verosimilitud
2.
Glob Chang Biol ; 29(14): 4094-4106, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37059700

RESUMEN

Land-use and land-cover transitions can affect biodiversity and ecosystem functioning in a myriad of ways, including how energy is transferred within food-webs. Size spectra (i.e. relationships between body size and biomass or abundance) provide a means to assess how food-webs respond to environmental stressors by depicting how energy is transferred from small to larger organisms. Here, we investigated changes in the size spectrum of aquatic macroinvertebrates along a broad land-use intensification gradient (from Atlantic Forest to mechanized agriculture) in 30 Brazilian streams. We expected to find a steeper size spectrum slope and lower total biomass in more disturbed streams due to higher energetic expenditure in physiologically stressful conditions, which has a disproportionate impact on large individuals. As expected, we found that more disturbed streams had fewer small organisms than pristine forest streams, but, surprisingly, they had shallower size spectrum slopes, which indicates that energy might be transferred more efficiently in disturbed streams. Disturbed streams were also less taxonomically diverse, suggesting that the potentially higher energy transfer in these webs might be channelled via a few efficient trophic links. However, because total biomass was higher in pristine streams, these sites still supported a greater number of larger organisms and longer food chains (i.e. larger size range). Our results indicate that land-use intensification decreases ecosystem stability and enhances vulnerability to population extinctions by reducing the possible energetic pathways while enhancing efficiency between the remaining food-web linkages. Our study represents a step forward in understanding how land-use intensification affects trophic interactions and ecosystem functioning in aquatic systems.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Cadena Alimentaria , Bosques , Biomasa , Ríos/química , Invertebrados
3.
Glob Chang Biol ; 28(3): 848-858, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432930

RESUMEN

Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18-68°N latitude, -4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD's decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size-spectra deviations as indicators of fundamental changes to the structure and function of ecological communities.


Asunto(s)
Ecología , Ríos , Biomasa , Tamaño Corporal , Ríos/química , Temperatura
4.
Ecol Lett ; 21(12): 1757-1770, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30251392

RESUMEN

In both plant and animal systems, size can determine whether an individual survives and grows under different environmental conditions. However, it is unclear whether and when size-dependent responses to exogenous environmental fluctuations affect population dynamics. Size-by-environment interactions create pathways for environmental fluctuations to influence population dynamics by allowing for negative covariation between sizes within vital rates (e.g. small and large individuals have negatively covarying survival rates) and/or size-dependent variability in a vital rate (e.g. survival of large individuals varies less than small individuals through time). Whether these phenomena affect population dynamics depends on how they are mediated by elasticities (they must affect the sizes and vital rates that matter) and their projected impacts will depend on model functional form (the impact of reduced variance depends on the relationship between the environment and vital rate). We demonstrate these ideas with an analysis of fifteen species from five semiarid plant communities. We find that size-by-environment interactions are common but do not impact long-term population dynamics. Size-by-environment interactions may yet be important for other species. Our approach can be applied to species in other ecosystems to determine if and how size-by-environment interactions allow them to cope with, or exploit, fluctuating environments.


Asunto(s)
Ecosistema , Plantas , Animales , Dinámica Poblacional
5.
J Anim Ecol ; 87(5): 1407-1417, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29882966

RESUMEN

Body size is a central functional trait in ecological communities. Despite recognition of the importance of above ground-below ground interactions, effects of above-ground herbivores on size and abundance-size relationships in soil fauna are almost uncharted. Depending on climate and soil properties, herbivores may increase basal resources of soil food webs, or reduce pore space, mechanisms expected to have contrasting effects on soil animal body size. We investigated how body size and shape of soil nematodes responded to mammalian grazers in three semi-arid grassland sites, along a gradient of soil texture and organic matter (OM) in a long-term herbivore removal study. We analysed nematode mass, length, diameter, body size distribution and biomass distribution. We formulated two mechanistic hypotheses to assess whether resource availability or pore space was the dominant abiotic control and modulated the effects of grazing. In ungrazed soils, average and maximum nematode size, as well as abundance and biomass of large nematodes, were greater in the high-OM than in the low-OM soil, and intermediate in the medium-OM soil. Grazing promoted larger sizes in the low-OM soil, where it had been shown to increase OM and microbial biomass, and led to more homogeneous average size and body size distribution across sites. The results support the hypothesis that nematode size was controlled by basal resource availability rather than by pore space. However, body shape might have been constrained by small pores in the fine-texture, high-OM soil, where nematodes were more elongated. Grazing may facilitate larger sizes in soil nematode communities by boosting basal resources where these are limiting, with important implications for estimations of nematode biomass and contribution to carbon and nutrient cycling. These findings contribute to the insofar-limited mechanistic understanding of how herbivores can shape functional traits of soil fauna and demonstrate that animals at one trophic level may control patterns in body size and abundance-size relationships in other trophic levels without a direct predator prey or competitive linkage between them.


Asunto(s)
Nematodos , Suelo , Animales , Biomasa , Tamaño Corporal , Pradera , Herbivoria
6.
Am J Bot ; 103(9): 1678-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27613516

RESUMEN

PREMISE OF THE STUDY: The reproduction and growth of large palms are influenced by many factors, including light and plant size, but few studies have examined smaller species (up to 2 m tall). We examined the effect of incident light and individual size on growth rates, the probability of reproduction, and the number of inflorescences of three small palm species and compared two methods for estimating canopy openness. METHODS: We measured canopy openness above the crowns of 132 adult plants and in the centers of 72 subplots (10 × 10 m) where individuals were sampled. We also recorded individual size and the number of leaves and inflorescences produced in two years. KEY RESULTS: Reproductive individuals of Butia paraguayensis tend to occur in illuminated microhabitats. Reproduction of Acrocomia emensis was correlated with stem diameter, but not with light. Reproduction was inversely related to individual size and light in Syagrus petraea, probably because this clonal palm invests heavily in sexual reproduction during its younger stages and clonal activity in older stages and may be adapted to the low-light conditions of the woodland understory. Growth was not predicted by light or individual size. Stronger correlations were found when incident light was measured directly above the crown, as opposed to the subplot center. CONCLUSIONS: The influences of light on reproduction are dependent on plant life histories, even among related and sympatric species. Light measurements directly above individual crowns provide better understanding of the reproductive effort rather than in subplot center.


Asunto(s)
Arecaceae/fisiología , Botánica/métodos , Luz Solar , Arecaceae/crecimiento & desarrollo , Arecaceae/efectos de la radiación , Ambiente , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Inflorescencia/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Tallos de la Planta/efectos de la radiación , Reproducción
7.
Glob Chang Biol ; 20(1): 240-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24022892

RESUMEN

There is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined China's tropical and subtropical evergreen broadleaved forests (TEBF) that cover >26% of China's terrestrial land. The sustainability of this biome is vital to the maintenance of local ecosystem services (e.g., carbon sequestration, biodiversity conservation, climatic regulation), many of which may influence patterns of atmospheric circulation and composition at regional to global scales. Here, we analyze time-series data collected from thirteen permanent plots within China's unmanaged TEBF to study whether and how this biome has changed over recent decades. We find that the numbers of individuals and species for shrub and small tree have increased since 1978, whereas the numbers of individuals and species for tree have decreased over this same time period. The shift in species composition is accompanied by a decrease in the mean diameter at breast height (DBH) for all individuals combined. China's TEBF may thereby be transitioning from cohorts of fewer and larger individuals to ones of more and smaller individuals, which shows a unique change pattern differing from the documented. Regional-scale drying is likely responsible for the biome's reorganization. This biome-wide reconstitution would deeply impact the regimes of carbon sequestration and biodiversity conservation and have implications for the sustainability of economic development in the area.


Asunto(s)
Árboles/crecimiento & desarrollo , Biodiversidad , China , Suelo , Clima Tropical
8.
Ecol Evol ; 14(5): e11393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38746547

RESUMEN

Plants can adapt to environmental changes by adjusting their functional traits and biomass allocation. The size and number of flowers are functional traits related to plant reproduction. Life history theory predicts that there is a trade-off between flower size and number, and the trade-off can potentially explain the adaptability of plants. Elevation gradients in mountains provide a unique opportunity to test how plants will respond to climate change. In this study, we tried to better explain the adaptability of the alpine plant Gentiana lawrencei var. farreri in response to climate change. We measured the flower size and number, individual size, and reproductive allocation of G. lawrencei var. farreri during the flowering period along an elevation gradient from 3200 to 4000 m, and explored their relationships using linear mixed-effect models and the structural equation model. We found that with elevation increasing, individual size and flower number decreased and flower size increased, while reproductive allocation remained unchanged. Individual size positively affected flower number, but was not related to flower size; reproductive allocation positively affected flower size, but was not related to flower number; there is a clear trade-off between flower size and number. We also found that elevation decreased flower number indirectly via directly reducing individual size. In sum, this study suggests that G. lawrencei var. farreri can adapt to alpine environments by the synergies or trade-offs among individual size, reproductive allocation, flower size, and flower number. This study increases our understanding of the adaptation mechanisms of alpine plants to climate change in alpine environments.

9.
Biology (Basel) ; 12(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37626948

RESUMEN

Yongle Atoll was the largest atoll in the Xisha Islands of the South China Sea, and it was a coral reef ecosystem with important ecological and economic values. In order to better protect and manage the coral reef fish resources in Yongle Atoll, we analyzed field survey data from artisanal fishery, catches, and underwater video from 2020 to 2022 and combined historical research to explore the changes in fish species composition and community structure in Yongle Atoll over the past 50 years. The results showed that a total of 336 species of fish were found on Yongle Atoll, belonging to 17 orders and 60 families. Among them, Perciformes had the most fish species with 259 species accounting for 77.08% of the total number of species. The number of fish species in the coral reef of Yongle Atoll was exponentially correlated with its corresponding maximum length and significantly decreases with its increase. The fish community structure of Yongle Atoll changed, and the proportion of large carnivorous fish decreased significantly, while the proportion of small-sized and medium-sized fish increased. At the same time, Yongle Atoll has 18 species of fish listed on the IUCN Red List, 15 of which are large fish. The average taxonomic distinctness (Delta+, Δ+) and the variation taxonomic distinctness (Lambda+, Λ+) in 2020-2022 were lower than the historical data, and the number of fish orders, families, and genera in Yongle Atoll has decreased significantly, which indicates that the current coral reef fish species in Yongle Atoll have closer relatives and higher fish species uniformity. In addition, the similarity of fish species in Yongle Atoll was relatively low at various time periods, further proving that the fish community structure has undergone significant variation. In general, due to multiple impacts, such as overfishing, fishing methods, environmental changes, and habitat degradation, the fish species composition of Yongle Atoll may have basically evolved from carnivorous to herbivorous, from large fish to small fish, and from complexity to simplicity, leaving Yongle Atoll in an unstable state. Therefore, we need to strengthen the continuous monitoring of the coral reef ecosystem in Yongle Atoll to achieve the protection and restoration of its ecological environment and fishery resources, as well as sustainable utilization and management.

10.
Ecology ; 101(6): e03011, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32065669

RESUMEN

The maximum entropy theory of ecology (METE) applies the concept of "entropy" from information theory to predict macroecological patterns. The energetic predictions of the METE rely on predetermined metabolic scaling from external theories, and this reliance diminishes the testability of the theory. In this work, I build parameterized METE models by treating the metabolic scaling exponent as a free parameter, and I use the maximum-likelihood method to obtain empirically plausible estimates of the exponent. I test the models using the individual tree data from an oak-dominated deciduous forest in the northeastern United States and from a tropical forest in central Panama. My analysis shows that the metabolic scaling exponents predicted from the parameterized METE models deviate from that of the metabolic theory of ecology and exhibit large variation, at both community and population levels. Assemblage and population abundance may act as ecological constraints that regulate the individual-level metabolic scaling behavior. This study provides a novel example of the use of the parameterized METE models to reveal the biological processes of individual organisms. The implication and possible extensions of the parameterized METE models are discussed.


Asunto(s)
Modelos Biológicos , Árboles , Entropía , Bosques , Panamá
11.
Ying Yong Sheng Tai Xue Bao ; 29(1): 68-74, 2018 Jan.
Artículo en Zh | MEDLINE | ID: mdl-29692014

RESUMEN

The paper studied the effects of altitude on reproductive characteristics in 12 populations of Saussurea przewalskii at the eastern Qinhai-Tibetan Plateau, China. The results showed that the size, reproductive organ biomass, vegetative organ biomass, capitulum number, and seed number of individual plant decreased with the increasing altitude, and the capitulum mass and hundred-grain mass increased continuously. S. przewalskii could ensure its reproduction by reducing plant body size to decrease resource consumption, and increasing the allocation of limit resources to flower biomass. In order to ensure sexual reproduction, the reproductive allocation of the plants increased with increasing the altitude. There was a trade-off between capitulum number and capitulum mass, and between seed number and hundred-grain mass, which allowed the plants to maximize their fitness under stressful conditions.


Asunto(s)
Altitud , Saussurea/fisiología , China , Reproducción , Tibet
12.
Ecol Evol ; 7(24): 10815-10828, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299260

RESUMEN

Research on individual trait variation has gained much attention because of its implication for ecosystem functions and community ecology. The effect of individual variation on population and community abundance (number of individuals) variation remains scarcely tested. Using two established ecological scaling laws (Taylor's law and abundance-size relationship), we derived a new scaling relationship between the individual size variation and spatial variation of abundance. Tested against multi-plot tree data from Diaoluo Mountain tropical forest in Hainan, China, the new scaling relationship showed that individual size variation reduced the spatial variation of community assemblage abundance, but not of taxon-specific population abundance. The different responses of community and population to individual variation were reflected by the validity of the abundance-size relationship. We tested and confirmed this scaling framework using two measures of individual tree size: aboveground biomass and diameter at breast height. Using delta method and height-diameter allometry, we derived the analytic relation of scaling exponents estimated under different individual size measures. In addition, we used multiple regression models to analyze the effect of taxon richness on the relationship between individual size variation and spatial variation of population or community abundance, for taxon-specific and taxon-mixed data, respectively. This work offers empirical evidence and a scaling framework for the negative effect of individual trait variation on spatial variation of plant community. It has implications for forest ecosystem and management where the role of individual variation in regulating population or community spatial variation is important but understudied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA