Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Immunity ; 51(3): 451-464.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471108

RESUMEN

Type I and III interferons (IFNs) activate similar downstream signaling cascades, but unlike type I IFNs, type III IFNs (IFNλ) do not elicit strong inflammatory responses in vivo. Here, we examined the molecular mechanisms underlying this disparity. Type I and III IFNs displayed kinetic differences in expression of IFN-stimulated genes and proinflammatory responses, with type I IFNs preferentially stimulating expression of the transcription factor IRF1. Type III IFNs failed to induce IRF1 expression because of low IFNλ receptor abundance and insufficient STAT1 activation on epithelial cells and thus did not activate the IRF1 proinflammatory gene program. Rather, IFNλ stimulation preferentially induced factors implicated in tissue repair. Our findings suggest that IFN receptor compartmentalization and abundance confer a spatiotemporal division of labor where type III IFNs control viral spread at the site of the infection while restricting tissue damage; the transient induction of inflammatory responses by type I IFNs recruits immune effectors to promote protective immunity.


Asunto(s)
Factor 1 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Interferones/inmunología , Animales , Línea Celular , Células Epiteliales/inmunología , Humanos , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT1/inmunología , Interferón lambda
2.
BMC Vet Res ; 18(1): 440, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36522721

RESUMEN

BACKGROUND: Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described. RESULTS: In this study, canine IRF1 (CaIRF1) was cloned. After a series of bioinformatics analyses, we found that the CaIRF1 protein structure was similar to that of other animal IRF1 proteins, including a conserved DNA-binding domain (DBD), an IRF-association domain 2 (IAD2) domain and two nuclear localization signals (NLSs). An indirect immunofluorescence assay (IFA) revealed that CaIRF1 was mainly distributed in the nucleus. Overexpression of CaIRF1 in Madin-Darby canine kidney cells (MDCK) induced high levels of interferon ß (IFNß) and IFN-stimulated response element (ISRE) promoter activation and induced interferon-stimulated gene (ISG) expression. Subsequently, we assayed the antiviral activity of CaIRF1 against vesicular stomatitis virus (VSV) and canine parvovirus type-2 (CPV-2) in MDCK cells. Overexpression of CaIRF1 effectively inhibited the viral yields of VSV and CPV-2, while knocking down of CaIRF1 expression mildly increased viral gene copies. CONCLUSIONS: CaIRF1 is involved in the cellular IFN-I signaling pathway and plays an important role in the antiviral response.


Asunto(s)
Antivirales , Interferones , Animales , Perros , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Antivirales/farmacología , Interferones/metabolismo , Interferón beta/genética , Regulación de la Expresión Génica , Mamíferos
3.
Curr Issues Mol Biol ; 43(1): 153-162, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069326

RESUMEN

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that negatively regulates anti-tumor immunity. Recent reports indicate that anti-cancer treatments, such as radiation therapy, increase PD-L1 expression on the surface of tumor cells. We previously reported that the nuclear transport receptor karyopherin-ß1 (KPNB1) is involved in radiation-increased PD-L1 expression on head-and-neck squamous cell carcinoma cells. However, the mechanisms underlying KPNB1-mediated, radiation-increased PD-L1 expression remain unknown. Thus, the mechanisms of radiation-increased, KPNB1-mediated PD-L1 expression were investigated by focusing on the transcription factor interferon regulatory factor 1 (IRF1), which is reported to regulate PD-L1 expression. Western blot analysis showed that radiation increased IRF1 expression. In addition, flow cytometry showed that IRF1 knockdown decreased cell surface PD-L1 expression of irradiated cells but had a limited effect on non-irradiated cells. These findings suggest that the upregulation of IRF1 after irradiation is required for radiation-increased PD-L1 expression. Notably, immunofluorescence and western blot analyses revealed that KPNB1 inhibitor importazole not only diffused nuclear localization of IRF1 but also decreased IRF1 upregulation by irradiation, which attenuated radiation-increased PD-L1 expression. Taken together, these findings suggest that KPNB1 mediates radiation-increased cell surface PD-L1 expression through both upregulation and nuclear import of IRF1.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor 1 Regulador del Interferón/antagonistas & inhibidores , Neoplasias Pulmonares/metabolismo , Quinazolinas/farmacología , beta Carioferinas/antagonistas & inhibidores , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Humanos , Inmunoterapia/métodos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Radiación Ionizante
4.
Mol Med ; 26(1): 56, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517688

RESUMEN

BACKGROUND: Ischemia and reperfusion (I/R) induces cytokines, and up-regulates inducible nitric oxide synthase (iNOS), interferon regulatory factor-1(IRF1) and p53 up-regulated modulator of apoptosis (PUMA), which contribute to cell death and tissue injury. However, the mechanisms that I/R induces IRF1-PUMA through iNOS/NO is still unknown. METHODS: Ischemia was induced by occluding structures in the portal triad (hepatic artery, portal vein, and bile duct) to the left and median liver lobes for 60 min, and reperfusion was initiated by removal of the clamp. Induction of iNOS, IRF1 and PUMA in response to I/R were analyzed. I/R induced IRF1 and PUMA expression were compared between iNOS wild-type and iNOS knockout (KO) mice. Human iNOS gene transfected-cells were used to determine iNOS/NO signals targeting IRF1. To test whether HDAC2 was involved in the mediation of iNOS/NO-induced IRF1 transcriptional activities and its target gene (PUMA and p21) expression, NO donors were used in vitro and in vivo. RESULTS: IRF1 nuclear translocation and PUMA transcription elevation were markedly induced following I/R in the liver of iNOS wild-type mice compared with that in knock-out mice. Furthermore, I/R induced hepatic HDAC2 expression and activation, and decreased H3AcK9 expression in iNOS wild-type mice, but not in the knock-out mice. Mechanistically, over-expression of human iNOS gene increased IRF1 transcriptional activity and PUMA expression, while iNOS inhibitor L-NIL reversed these effects. Cytokine-induced PUMA through IRF1 was p53 dependent. IRF1 and p53 synergistically up-regulated PUMA expression. iNOS/NO-induced HDAC2 mediated histone H3 deacetylation and promoted IRF1 transcriptional activity. Moreover, treating the cells with romidepsin, an HDAC1/2 inhibitor decreased NO-induced IRF1 and PUMA expression. CONCLUSIONS: This study demonstrates a novel mechanism that iNOS/NO is required for IRF1/PUMA signaling through a positive-feedback loop between iNOS and IRF1, in which HDAC2-mediated histone modification is involved to up-regulate IRF1 in response to I/R in mice.


Asunto(s)
Factor 1 Regulador del Interferón/genética , Hepatopatías/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Daño por Reperfusión/metabolismo , Activación Transcripcional , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Humanos , Factor 1 Regulador del Interferón/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/patología , Ratones , Ratones Noqueados , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Biochem Biophys Res Commun ; 521(2): 326-332, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668371

RESUMEN

Hematopoiesis is systematically regulated by microenvironmental factors. The positive and negative factors coordinated together to yield a complicated blood system. Interferon-γ (IFNγ) has been identified as a common cause of various hematopoietic abnormalities, such as aplastic anemia. However, its impact on monolineage development, especially erythropoiesis, has not been fully elucidated from the cellular angle. In this study, we investigated the behavior of IFNγ and found that IFNγ plays dual functions on erythropoiesis; it not only blocks the erythroid lineage commitment but also accelerates the erythroid differentiation process, ultimately leading to the erythropoietic window clearance. IFNγ can even powerfully initiate early differentiation without the existence of erythropoietin (EPO). Interferon regulatory factor 1 (IRF1) was confirmed as the essential downstream effector, and its ectopic overexpression can also have the same effect as that of IFNγ. These results reveal that the IFNγ-IRF1 axis plays a bidirectional role on erythropoiesis, impeding the access to erythroid lineage and driving the coming cells toward the differentiation endpoint. This model may place an innovative implication for IFNγ-IRF1 axis to understand its in-depth mechanism on normal hematopoiesis and abnormal blood disorders, especially aplastic anemia.


Asunto(s)
Eritropoyesis/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/farmacología , Transducción de Señal , Anemia Aplásica , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Humanos
6.
Neurol Sci ; 40(4): 779-791, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30671738

RESUMEN

BACKGROUND: Recent evidences have implicated neuroprotective effects of CX3CR1 in multiple sclerosis (MS). But whether CX3CR1 is involved in modulation of antigen-presenting cell (APC)-related molecular MHC-II and what the possible mechanism is remain unidentified. OBJECTIVE: In this study, we intended to investigate the effects of CX3CR1 on MHC-II expressions on brain myeloid cells in experimental autoimmune encephalomyelitis (EAE) mice and explore the possible regulators for it. METHODS: CX3CR1-deficient EAE mice were created. Disease severity, pathological damage, and the expressions of MHC-II and its mediators on myeloid cells were detected. RESULTS: We found that compare with wile-typed EAE mice, CX3CR1-deficient EAE mice exhibited more severe disease severity. An accumulation of CD45+CD115+Ly6C-CD11c+ cells was reserved in the affected EAE brain of CX3CR1-deficient mice, consistent with disease severity and pathological damage in the brain. The expressions of MHC-II on the brain CD45+CD115+Ly6C-CD11c+ cells of CX3CR1-deficient EAE mice were elevated, in accord with the increased protein and mRNA expressions of class II transactivator (CIITA) and interferon regulatory factor-1 (IRF-1). CONCLUSIONS: The findings indicated that CX3CR1 might be an important regulator for MHC-II expressions on APCs, playing a beneficial role in EAE. The mechanism was probably through regulation on the MHC-II regulators CIITA and IRF-1.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Encefalomielitis Autoinmune Experimental , Antígenos de Histocompatibilidad Clase II/metabolismo , Inflamación , Factor 1 Regulador del Interferón/metabolismo , Esclerosis Múltiple , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/deficiencia , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Células Mieloides/metabolismo
7.
J Cell Biochem ; 119(12): 9720-9729, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30145803

RESUMEN

Interferon regulatory factor 1 (IRF1) has been found to serve as a tumor suppressor in cholangiocarcinoma, and enabled prediction of clinical progression and prognosis in our previous study. The objective of the current study is to screen and identify valuable microRNAs (miR), which target IRF1 to regulate cholangiocarcinoma cell proliferation, migration, and invasion. High expression of miR-383 was observed in cholangiocarcinoma tissues and cells. Meanwhile, we found the predicted binding site of miR-383 on the IRF1 3'-untranslated region (3'-UTR) according to the miR target database. The miR-383 expression was negatively related to IRF1 messeneger RNA (mRNA) and protein expression in cholangiocarcinoma tissue samples, and miR-383 negatively regulated IRF1 mRNA and protein expression in cholangiocarcinoma cells. Subsequently, we conducted a luciferase reporter assay to prove the predicted binding site miR-383 on IRF1 3'-UTR. Moreover, the results of the rescue study suggested that IRF1 was a functional target of miR-383 involved in regulating cholangiocarcinoma cell proliferation, migration, and invasion. Finally, we evaluated the clinical and prognostic significance of miR-383 in cholangiocarcinoma cases, and found that high expression of miR-383 was correlated with advanced tumor stage, large tumor size, present vascular invasion, and metastasis, and acted as an unfavorable independent prognostic factor. In conclusion, miR-383 serves as a tumor-suppressive miR to regulate cholangiocarcinoma cell proliferation, migration, and invasion via directly targeting IRF1.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Factor 1 Regulador del Interferón/genética , MicroARNs/genética , Regiones no Traducidas 3' , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/mortalidad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 1 Regulador del Interferón/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Pronóstico
8.
Am J Physiol Gastrointest Liver Physiol ; 315(6): G991-G1002, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307739

RESUMEN

Interleukin-23 (IL-23) is a proinflammatory cytokine initially studied in autoimmune disease that has been more recently linked to innate immunity. We observed that the expression of IL-23 is upregulated during hypoxia in a hepatocyte and nonparenchymal cell (NPC) coculture system, as well as during ischemia-reperfusion (I/R) injury in the liver. Interferon regulatory factor-1 (IRF-1) is a transcription factor that induces expression of multiple inflammatory cytokines and has been shown to play a critical role in liver I/R injury. We observed that IL-23 signaling induces not only the IL-17/chemokine (C-X-C motif) ligand 2 (CXCL2) pathway but also the IFN-γ/IRF-1 pathway. Quantification of cytokine genes revealed increased liver expression of IL-17a, CXCL2, and IRF-1 messenger RNA during liver transplantation. Recombinant IL-23 treated hepatocytes, and NPC coculture led to IL-17, CXCL2, IFN-γ, and IRF-1 expression. With anti-IL-17 and anti-Ly6G antibody neutralization, neutrophil recruitment and IFN-γ production were decreased during warm I/R injury. Overexpression of IL-23 in vivo through use of an adenovirus vector also led to expression of IL-17, CXCL2, IFN-γ, and IRF-1. The increased expression of IL-23 also led to increased apoptosis in the liver. By neutralization of IL-23 through use of an anti-IL-23p19 antibody, we were able to attenuate liver damage in a wild-type but not a natural killer T (NKT) cell-deficient mouse. This suggests that IL-23 signaling shares a common pathway with NKT cells. In conclusion, IL-23 is induced early by I/R in the liver. Its signaling leads to activation of the IL-17/CXCL2 and IFN-γ/IRF-1 pathways, resulting in increased apoptosis and necrosis. NEW & NOTEWORTHY IL-23 is expressed early during cold ischemia-reperfusion (I/R), and this expression is associated with expression of IL-17 and chemokine (C-X-C motif) ligand 2. Neutralization of IL-23 during cold I/R can significantly reduce liver damage as well as decrease cytokine production and neutrophil infiltration in the liver. IL-23 appears to activate IFN-γ production in natural killer T cells within the liver which, in turn, activates interferon regulatory factor-1, a known inflammatory transcription factor during I/R injury.


Asunto(s)
Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Interleucina-23/metabolismo , Trasplante de Hígado/efectos adversos , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología , Animales , Citocinas/metabolismo , Hepatocitos/metabolismo , Interleucina-17/metabolismo , Hígado/metabolismo , Ratones , Células T Asesinas Naturales/metabolismo , Daño por Reperfusión/etiología
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 721-734, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29269050

RESUMEN

Ischemic brain injuries caused release of damage-associated molecular patterns (DAMPs) that activate microglia/macrophages (MG/MPs) by binding to Toll-like receptors. Using middle cerebral artery transiently occluded rats, we confirmed that MG/MPs expressed inducible nitric oxide synthase (iNOS) on 3days after reperfusion (dpr) in ischemic rat brain. iNOS expression almost disappeared on 7dpr when transforming growth factor-ß1 (TGF-ß1) expression was robustly increased. After transient incubation with TGF-ß1 for 24h, rat primary microglial cells were incubated with lipopolysaccharide (LPS) and released NO level was measured. The NO release was persistently suppressed even 72h after removal of TGF-ß1. The sustained TGF-ß1 effects were not attributable to microglia-derived endogenous TGF-ß1, as revealed by TGF-ß1 knockdown and in vitro quantification studies. Then, boiled supernatants prepared from ischemic brain tissues showed the similar sustained inhibitory effects on LPS-treated microglial cells that were prevented by the TGF-ß1 receptor-selective blocker SB525334. After incubation with TGF-ß1 for 24h and its subsequent removal, LPS-induced phosphorylation of IκB kinases (IKKs), IκB degradation, and NFκB nuclear translocation were inhibited in a sustained manner. SB525334 abolished all these effects of TGF-ß1. In consistent with the in vitro results, phosphorylated IKK-immunoreactivity was abundant in MG/MPs in ischemic brain lesion on 3dpr, whereas it was almost disappeared on 7dpr. The findings suggest that abundantly produced TGF-ß1 in ischemic brain displays sustained anti-inflammatory effects on microglial cells by persistently inhibiting endogenous Toll-like receptor ligand-induced IκB degradation.


Asunto(s)
Infarto de la Arteria Cerebral Media/patología , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Animales , Células Cultivadas , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Microglía/metabolismo , Microglía/patología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
10.
J Virol ; 91(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28835505

RESUMEN

The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-α/ß) (type I), IFN-γ (type II), and IFN-λ (type III). The transcription factor interferon regulatory factor 1 (IRF-1) has a demonstrated role in shaping innate and adaptive antiviral immunity by inducing the expression of IFN-stimulated genes (ISGs) and mediating signals downstream of IFN-γ. Although ectopic expression experiments have suggested an inhibitory function of IRF-1 against infection of alphaviruses in cell culture, its role in vivo remains unknown. Here, we infected Irf1 -/- mice with two distantly related arthritogenic alphaviruses, chikungunya virus (CHIKV) and Ross River virus (RRV), and assessed the early antiviral functions of IRF-1 prior to induction of adaptive B and T cell responses. IRF-1 expression limited CHIKV-induced foot swelling in joint-associated tissues and prevented dissemination of CHIKV and RRV at early time points. Virological and histological analyses revealed greater infection of muscle tissues in Irf1 -/- mice than in wild-type mice. The antiviral actions of IRF-1 appeared to be independent of the induction of type I IFN or the effects of type II and III IFNs but were associated with altered local proinflammatory cytokine and chemokine responses and differential infiltration of myeloid cell subsets. Collectively, our in vivo experiments suggest that IRF-1 restricts CHIKV and RRV infection in stromal cells, especially muscle cells, and that this controls local inflammation and joint-associated swelling.IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates the expression of a broad range of antiviral host defense genes. In this study, using Irf1 -/- mice, we investigated the role of IRF-1 in modulating pathogenesis of two related arthritogenic alphaviruses, chikungunya virus and Ross River virus. Our studies show that IRF-1 controlled alphavirus replication and swelling in joint-associated tissues within days of infection. Detailed histopathological and virological analyses revealed that IRF-1 preferentially restricted CHIKV infection in cells of nonhematopoietic lineage, including muscle cells. The antiviral actions of IRF-1 resulted in decreased local inflammatory responses in joint-associated tissues, which prevented immunopathology.

11.
Prostate ; 77(15): 1489-1498, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28905415

RESUMEN

BACKGROUND: Neuroendocrine-differentiated prostate cancer (NEPCa) is refractory to androgen deprivation therapy and shows a poor prognosis. The underlying mechanisms responsible for neuroendocrine differentiation (NED) are yet to be clarified. In this study, we investigated the role of mammalian target of rapamycin (mTOR) in NEPCa. METHODS: We utilized a gain-of-function analysis by establishing a human PCa LNCaP stable line that expresses hyperactive mTOR (LNCaP-mTOR). Then, we employed a comprehensive mass spectrometric analysis to identify a key transcription factor in LNCaP-mTOR, followed by a loss-of-function analysis using CRISPR/Cas system. RESULTS: The activation of mTOR induced NED. We observed significant cell growth arrest in NED of LNCaP-mTOR, which accompanied increased expression of p21WAF1/CIP1 . A comprehensive mass spectrometric analysis identified interferon regulatory factor 1 (IRF1) as a key transcription factor in growth arrest of LNCaP-mTOR. The disruption of IRF1 gene in LNCaP-mTOR reversed cell growth arrest along with the suppression of its target p21WAF1/CIP1 . These results indicate that the growth arrest in NED is at least in part dependent on IRF1 through the induction of p21WAF1/CIP1 . CONCLUSIONS: We identified active mTOR as a novel inducer of NED, and elucidated a mechanism underlying the malignant transformation of NEPCa by recapitulating NED in vitro.


Asunto(s)
Factor 1 Regulador del Interferón/metabolismo , Tumores Neuroendocrinos/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Xenoinjertos , Humanos , Factor 1 Regulador del Interferón/genética , Masculino , Ratones , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba
12.
Am J Physiol Cell Physiol ; 311(2): C212-24, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281481

RESUMEN

We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Leptina/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Sitios de Unión/genética , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica/genética , Humanos , Mutagénesis Sitio-Dirigida/métodos , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Transfección/métodos , Regulación hacia Arriba/genética
13.
Int Immunol ; 27(3): 143-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25280793

RESUMEN

Infection with certain pathogens induces a shift of the Th subset balance to a Th1 dominant state. This, in turn, results in the suppression of Th2 responses. We focused on the involvement of interferon regulatory factor-1 (IRF-1) in the suppression of Th2 cells during Listeria infection. We found that the inhibition of IL-4 production by Th2 cells is mediated by a soluble factor (LmSN) produced by Listeria-infected antigen-presenting cells. The inhibition is not observed with T cells from Irf1 gene-targeted mice. IRF-1 suppresses transcription of the Il4 gene in Th2 cells. Under the influence of the LmSN, IRF-1 binds to the 3' untranslated region (UTR) region of the Il4 gene and down-regulates Il4 gene transcription. Finally, we identified IL-1α and IL-1ß as the mediator of the LmSN activity. Signaling through IL-1R induces the stabilization and/or nuclear translocation of IRF-1. We propose that IRF-1 functions to induce the T-cell subset shift via a novel mechanism. Under the influence of IL-1, IRF-1 translocates into the nucleus and acts on the 3'UTR region of the Il4 gene, thus inhibiting its transcription in Th2 cells. As a result, the immune system shifts predominantly to a Th1 response during Listeria infection, resulting in effective protection of the host.


Asunto(s)
Núcleo Celular/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Interleucina-4/metabolismo , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Células TH1/inmunología , Células Th2/inmunología , Regiones no Traducidas 3'/genética , Animales , Células Cultivadas , Regulación hacia Abajo , Factor 1 Regulador del Interferón/genética , Interleucina-1/metabolismo , Interleucina-4/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Células TH1/microbiología , Balance Th1 - Th2 , Células Th2/microbiología
14.
Fish Shellfish Immunol ; 45(2): 877-88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26054788

RESUMEN

Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout. At 1, 3, 5, and 7 d post-vaccination, IHNV G transcripts were detected by quantitative real-time PCR in gills, spleen, kidney and intestinal tissues of vaccinated fish. This result suggested that the encapsulation of pIRF1A-G in alginate microparticles protected the DNA vaccine from degradation in the fish stomach and ensured vaccine early delivery to the hindgut, vaccine passage through the intestinal mucosa and its distribution thought internal and external organs of vaccinated fish. We also observed that the oral route required approximately 20-fold more plasmid DNA than the injection route to induce the expression of significant levels of IHNV G transcripts in kidney and spleen of vaccinated fish. Despite this limitation, increased IFN-1, TLR-7 and IgM gene expression was detected by qRT-PCR in kidney of vaccinated fish when a 10 µg dose of the oral pIRF1A-G vaccine was administered. In contrast, significant Mx-1, Vig-1, Vig-2, TLR-3 and TLR-8 gene expression was only detected when higher doses of pIRF1A-G (50 and 100 µg) were orally administered. The pIRF1A-G vaccine also induced the expression of several markers of the adaptive immune response (CD4, CD8, IgM and IgT) in kidney and spleen of immunized fish in a dose-dependent manner. When vaccinated fish were challenged by immersion with live IHNV, evidence of a dose-response effect of the oral vaccine could also be observed. Although the protective effects of the oral pIRF1A-G vaccine after a challenge with IHNV were partial, significant differences in cumulative percent mortalities among the orally vaccinated fish and the unvaccinated or empty-plasmid vaccinated fish were observed. Similar levels of protection were obtained after the intramuscular administration of 5 µg of pIRF1A-G or after the oral administration of a high dose of pIRF1A-G vaccine (100 µg); with 70 and 56 relative percent survival values, respectively. When fish were vaccinated with alginate microspheres containing high doses of the pIRF1A-G vaccine (50 or 100 µg), a significant increase in the production of anti-IHNV antibodies was detected in serum samples of the vaccinated fish compared with that in unvaccinated fish. At 10 days post-challenge, IHNV N gene expression was nearly undetectable in kidney and spleen of orally vaccinated fish which suggested that the vaccine effectively reduced the amount of virus in tissues of vaccinated fish that survived the challenge. In conclusion, our results demonstrated a significant increase in fish immune responses and resistance to an IHNV infection after the oral administration of increasing concentrations of a DNA vaccine against IHNV encapsulated into alginate microspheres.


Asunto(s)
Alginatos/uso terapéutico , Enfermedades de los Peces/inmunología , Virus de la Necrosis Hematopoyética Infecciosa/inmunología , Oncorhynchus mykiss , Infecciones por Rhabdoviridae/veterinaria , Vacunas Virales/inmunología , Inmunidad Adaptativa , Administración Oral , Animales , Anticuerpos Antivirales/análisis , Relación Dosis-Respuesta Inmunológica , Enfermedades de los Peces/virología , Regulación de la Expresión Génica , Ácido Glucurónico/uso terapéutico , Ácidos Hexurónicos/uso terapéutico , Inmunidad Innata , Riñón/inmunología , Microesferas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Bazo/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Carga Viral/veterinaria , Vacunas Virales/administración & dosificación
15.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L186-96, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24838750

RESUMEN

Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.


Asunto(s)
Quimiocina CXCL10/biosíntesis , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Factor 1 Regulador del Interferón/fisiología , Virosis/fisiopatología , Bronquios/citología , Línea Celular , Movimiento Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Femenino , Gefitinib , Humanos , Subtipo H1N1 del Virus de la Influenza A , Interleucina-8/biosíntesis , Células Asesinas Naturales/fisiología , Quinazolinas/farmacología , Virus Sincitiales Respiratorios , Rhinovirus , Transducción de Señal
16.
Biochem Biophys Res Commun ; 448(3): 323-8, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24657155

RESUMEN

Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of osteoarthritis (OA).Interferon regulatory factor 1 (IRF-1) is an important transcriptional factor accounting for inflammation response induced by TNF-α. The physiological function of IRF-1 in OA is still unknown. In this study, we reported that the expression levels of IRF-1 in OA chondrocytes were significantly higher compared to those in normal chondrocytes, which was reversed by treatment with Glatiramer acetate (GA), a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). We also found that GA is able to attenuate the upregulation of IRF-1 induced by TNF-α. Matrix metalloproteinase13 (MMP-13) is one of the downstream target genes of IRF-1, which can induce the degradation of collagen II. Importantly, our results indicated that GA suppressed the expression of MMP-13 as well as the degradation of collagen II. In addition, GA also suppressed TNF-α-induced production of NO and expression of iNOS. Finally, we found that the inhibition of STAT1 activation played a critical role in the inhibitory effects of GA on the induction of IRF-1 and MMP-13. These data suggest that GA might have a potential effect in therapeutic OA.


Asunto(s)
Colágeno Tipo II/metabolismo , Factor 1 Regulador del Interferón/antagonistas & inhibidores , Péptidos/farmacología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Inducción Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Acetato de Glatiramer , Humanos , Inmunosupresores/farmacología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Metaloproteinasa 13 de la Matriz/biosíntesis , Metaloproteinasa 13 de la Matriz/genética , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/metabolismo , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Bioorg Med Chem ; 22(1): 440-6, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24268367

RESUMEN

In the present study, we analyzed the intracellular accumulation of 6-(methylsulfinyl)hexyl isothiocyanate (6MITC) and its analogs in proinflammatory stimuli-activated J774.1 cells to predict the biological potencies of the ITCs. Our present analyses exhibited that the intracellular accumulation was in the order of 6MITC>2b>2e≈2c>2g>2d>2f>2h. Investigation of reactivity of the ITCs with glutathione (GSH) in the tumor cells revealed partial inhibition of GSH by the ITCs. Furthermore, the inhibition of nitric oxide (NO) production in the tumor cells was ascribed to the intracellularly accumulated ITCs. The NO suppression was correlated with the inhibition of tumor cell growth. Our present results suggest that the intracellular accumulation of the ITCs can be used to predict their biological potencies, such as inhibition of NO production that was correlated with suppression of tumor cell growth. To the best of our knowledge, this is the first report to predict the biological potency of 6MITC and its analogs with their intracellular accumulation.


Asunto(s)
Isotiocianatos/química , Óxido Nítrico/antagonistas & inhibidores , Humanos , Macrófagos/efectos de los fármacos , Óxido Nítrico/biosíntesis
18.
ESC Heart Fail ; 11(2): 986-1000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234115

RESUMEN

AIM: Myocardial injury is a significant cause of death. This study investigated the role and underlying mechanism of interferon-regulatory factor-1 (IRF1) in bevacizumab (BVZ)-induced cardiomyocyte injury. METHODS AND RESULTS: HL-1 cells and C57BL/6 mice receiving BVZ treatment were used to establish in vitro and in vivo models of myocardial injury. The relationship between VEGFA and 14-3-3γ was verified through co-immunoprecipitation and Glutathione S Transferase (GST) pull-down assay. Cell viability and apoptosis were analysed by MTT, propidium iodide (PI) staining and flow cytometry. The release of lactate dehydrogenase (LDH), cardiac troponins T (cTnT), and creatine kinase MB (CK-MB) was measured using the enzyme linked immunosorbent assay. The effects of knocking down IRF1 on BVZ-induced mice were analysed in vivo. IRF1 levels were increased in BVZ-treated HL-1 cells. BVZ treatment induced apoptosis, inhibited cell viability, and promoted the release of LDH, cTnT, and CK-MB. IRF1 silencing suppressed BVZ-induced myocardial injury, whereas IRF1 overexpression had the opposite effect. IRF1 regulated VEGFA expression by binding to its promoter, with the depletion of VEGFA or 14-3-3γ reversing the effects of IRF1 knockdown on the cell viability and apoptosis of BVZ-treated HL-1 cells. 14-3-3γ overexpression promoted cell proliferation, inhibited apoptosis, and reduced the release of LDH, cTnT, and CK-MB, thereby alleviating BVZ-induced HL-1 cell damage. In vivo, IRF1 silencing alleviated BVZ-induced cardiomyocyte injury by regulating the VEGFA/14-3-3γ axis. CONCLUSION: The IRF1-mediated VEGFA/14-3-3γ signalling pathway promotes BVZ-induced myocardial injury. Our study provides evidence for potentially new target genes for the treatment of myocardial injury.


Asunto(s)
Cardiotoxicidad , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Bevacizumab/farmacología , Ratones Endogámicos C57BL , Interferones
19.
Front Pharmacol ; 15: 1413699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915471

RESUMEN

The clinical application and biological function of interferon regulatory factor 1 (IRF1) in non-small cell lung cancer (NSCLC) patients undergoing chemoimmunotherapy remain elusive. The aim of this study was to investigate the predictive and prognostic significance of IRF1 in NSCLC patients. We employed the cBioPortal database to predict frequency changes in IRF1 and explore its target genes. Bioinformatic methods were utilized to analyze the relationship between IRF1 and immune regulatory factors. Retrospective analysis of clinical samples was conducted to assess the predictive and prognostic value of IRF1 in chemoimmunotherapy. Additionally, A549 cells with varying IRF1 expression levels were constructed to investigate its effects on NSCLC cells, while animal experiments were performed to study the role of IRF1 in vivo. Our findings revealed that the primary mutation of IRF1 is deep deletion and it exhibits a close association with immune regulatory factors. KRAS and TP53 are among the target genes of IRF1, with interferon and IL-2 being the predominantly affected pathways. Clinically, IRF1 levels significantly correlate with the efficacy of chemoimmunotherapy. Patients with high IRF1 levels exhibited a median progression-free survival (mPFS) of 9.5 months, whereas those with low IRF1 levels had a shorter mPFS of 5.8 months. IRF1 levels positively correlate with PD-L1 distribution and circulating IL-2 levels. IL-2 enhances the biological function of IRF1 and recapitulates its role in vivo in the knockdown group. Therefore, IRF1 may possess predictive and prognostic value for chemoimmunotherapy in NSCLC patients through the regulation of the IL-2 inflammatory pathway.

20.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865849

RESUMEN

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Asunto(s)
Regulación hacia Abajo , Homoharringtonina , Inflamación , Factor 1 Regulador del Interferón , ARN Mensajero , Molécula 1 de Adhesión Celular Vascular , Animales , Regulación hacia Abajo/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ratones , Homoharringtonina/farmacología , Masculino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Antiinflamatorios/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA