Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428422

RESUMEN

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Asunto(s)
Inflamación , Interleucina-10 , Mielopoyesis , Animales , Ratones , Embarazo/inmunología , Feto , Hematopoyesis , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Interleucina-10/inmunología , Animales Recién Nacidos , Femenino
2.
Cell ; 185(8): 1414-1430.e19, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325595

RESUMEN

Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.


Asunto(s)
COVID-19 , Citocinas , Humanos , Interleucina-2/farmacología , Células Asesinas Naturales , Ligandos , Receptores de Interleucina-10 , SARS-CoV-2
3.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32888430

RESUMEN

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Asunto(s)
Enfermedad de Crohn/microbiología , Células Epiteliales/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidad Clase II/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Transcriptoma/genética , Animales , Antibacterianos/farmacología , Relojes Circadianos/fisiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Dieta , Células Epiteliales/citología , Células Epiteliales/inmunología , Citometría de Flujo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Homeostasis , Hibridación Fluorescente in Situ , Interleucina-10/metabolismo , Interleucina-10/farmacología , Intestino Delgado/fisiología , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodicidad , Linfocitos T/inmunología , Transcriptoma/fisiología
4.
Mol Cell ; 79(1): 43-53.e4, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32464093

RESUMEN

The physiological role of immune cells in the regulation of postprandial glucose metabolism has not been fully elucidated. We have found that adipose tissue macrophages produce interleukin-10 (IL-10) upon feeding, which suppresses hepatic glucose production in cooperation with insulin. Both elevated insulin and gut-microbiome-derived lipopolysaccharide in response to feeding are required for IL-10 production via the Akt/mammalian target of rapamycin (mTOR) pathway. Indeed, myeloid-specific knockout of the insulin receptor or bone marrow transplantation of mutant TLR4 marrow cells results in increased expression of gluconeogenic genes and impaired glucose tolerance. Furthermore, myeloid-specific Akt1 and Akt2 knockout results in similar phenotypes that are rescued by additional knockout of TSC2, an inhibitor of mTOR. In obesity, IL-10 production is impaired due to insulin resistance in macrophages, whereas adenovirus-mediated expression of IL-10 ameliorates postprandial hyperglycemia. Thus, the orchestrated response of the endogenous hormone and gut environment to feeding is a key regulator of postprandial glycemia.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Hiperglucemia/patología , Insulina/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/análisis , Gluconeogénesis/genética , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Interleucina-10/fisiología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Periodo Posprandial , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/fisiología
5.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30005826

RESUMEN

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Asunto(s)
Antígenos CD/genética , Expresión Génica , Interleucina-10/biosíntesis , Células Plasmáticas/inmunología , Animales , Antígenos CD/inmunología , Subgrupos de Linfocitos B/inmunología , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Interleucina-10/genética , Activación de Linfocitos , Masculino , Ratones , Células Plasmáticas/fisiología , Receptores de Antígenos de Linfocitos B/metabolismo , Salmonelosis Animal/inmunología , Transducción de Señal , Linfocitos T/inmunología , Receptores Toll-Like/metabolismo , Regulación hacia Arriba/genética , Vacunas/inmunología , Proteína del Gen 3 de Activación de Linfocitos
6.
Immunity ; 48(2): 299-312.e5, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29396160

RESUMEN

Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-10/fisiología , Animales , Antígenos Virales/inmunología , Femenino , Galectinas/fisiología , Glicosilación , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal/fisiología
7.
Proc Natl Acad Sci U S A ; 119(32): e2201899119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914155

RESUMEN

The cellular and molecular components required for the formation of premetastatic niche (PMN) to promote lung metastasis need to be further investigated. Lung epithelial cells have been reported to exhibit immunomodulatory roles in lung homeostasis and also to mediate immunosuppressive PMN formation in lung metastasis. Here, by single-cell sequencing, we identified a tumor-polarized subpopulation of alveolar type 2 (AT2) epithelial cells with increased expression of glutathione peroxidase 3 (GPX3) and high production of interleukin (IL)-10 in the PMN. IL-10-producing GPX3+ AT2 cells inhibited CD4+ T cell proliferation but enhanced regulatory T cell generation. Mechanistically, tumor exosome-inducing GPX3 expression is required for GPX3+ AT2 cells to preferentially produce IL-10 by stabilizing hypoxia-inducible factor 1 (HIF-1α) and promoting HIF-1α-induced IL-10 production. Accordingly, conditional knockout of GPX3 in AT2 cells suppressed lung metastasis in spontaneous metastatic models. Together, our findings reveal a role of tumor-polarized GPX3+ AT2 cells in promoting lung PMN formation, adding insights into immune evasion in lung metastasis and providing potential targets for the intervention of tumor metastasis.


Asunto(s)
Células Epiteliales Alveolares , Interleucina-10 , Neoplasias Pulmonares , Células Epiteliales Alveolares/citología , Linfocitos T CD4-Positivos/citología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmón/citología , Pulmón/patología , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Escape del Tumor
8.
Immunol Rev ; 299(1): 31-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33484008

RESUMEN

Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-ß, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+  Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B Reguladores , Animales , Tolerancia Inmunológica , Ratones , Transducción de Señal , Tolerancia al Trasplante
9.
J Biol Chem ; 299(10): 105205, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660912

RESUMEN

Inflammation is one of the vital mechanisms through which the immune system responds to harmful stimuli. During inflammation, proinflammatory and anti-inflammatory cytokines interplay to orchestrate fine-tuned and dynamic immune responses. The cytokine interplay governs switches in the inflammatory response and dictates the propagation and development of the inflammatory response. Molecular pathways underlying the interplay are complex, and time-resolved monitoring of mediators and cytokines is necessary as a basis to study them in detail. Our understanding can be advanced by mathematical models that enable to analyze the system of interactions and their dynamical interplay in detail. We, therefore, used a mathematical modeling approach to study the interplay between prominent proinflammatory and anti-inflammatory cytokines with a focus on tumor necrosis factor and interleukin 10 (IL-10) in lipopolysaccharide-primed primary human monocytes. Relevant time-resolved data were generated by experimentally adding or blocking IL-10 at different time points. The model was successfully trained and could predict independent validation data and was further used to perform simulations to disentangle the role of IL-10 feedbacks during an acute inflammatory event. We used the insight to obtain a reduced predictive model including only the necessary IL-10-mediated feedbacks. Finally, the validated reduced model was used to predict early IL-10-tumor necrosis factor switches in the inflammatory response. Overall, we gained detailed insights into fine-tuning of inflammatory responses in human monocytes and present a model for further use in studying the complex and dynamic process of cytokine-regulated acute inflammation.

10.
Infect Immun ; 92(3): e0036023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38299826

RESUMEN

Malaria is strongly predisposed to bacteremia, which is associated with increased gastrointestinal permeability and a poor clinical prognosis. We previously identified mast cells (MCs) as mediators of intestinal permeability in malaria and described multiple cytokines that rise with parasitemia, including interleukin (IL)-10, which could protect the host from an inflammatory response and alter parasite transmission to Anopheles mosquitoes. Here, we used the Cre-loxP system and non-lethal Plasmodium yoelii yoelii 17XNL to study the roles of MC-derived IL-10 in malaria immunity and transmission. Our data suggest a sex-biased and local inflammatory response mediated by MC-derived IL-10, supported by early increased number and activation of MCs in females relative to males. Increased parasitemia in female MC IL-10 (-) mice was associated with increased ileal levels of chemokines and plasma myeloperoxidase (MPO). We also observed increased intestinal permeability in female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice but no differences in blood bacterial 16S DNA levels. Transmission success of P. yoelii to A. stephensi was higher in female relative to male mice and from female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice. These patterns were associated with increased plasma levels of pro-inflammatory cytokines in female MC IL-10 (-) mice and increased plasma levels of chemokines and markers of neutrophil activation in male MC IL-10 (-) mice. Overall, these data suggest that MC-derived IL-10 protects intestinal barrier integrity, regulates parasite transmission, and controls local and systemic host immune responses during malaria, with a female bias.


Asunto(s)
Anopheles , Malaria , Parásitos , Plasmodium yoelii , Animales , Masculino , Femenino , Ratones , Interleucina-10/genética , Anopheles/parasitología , Mastocitos , Parasitemia , Citocinas , Quimiocinas , Inmunidad
11.
Glia ; 72(8): 1501-1517, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38780232

RESUMEN

Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca2+) dynamics, particularly by restricting the release of Ca2+ from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.


Asunto(s)
Astrocitos , Interleucina-10 , Metanfetamina , Ratones Transgénicos , Microglía , Proteína de Unión al GTP cdc42 , Animales , Metanfetamina/toxicidad , Metanfetamina/farmacología , Interleucina-10/metabolismo , Interleucina-10/farmacología , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Ratones Endogámicos C57BL , Estimulantes del Sistema Nervioso Central/toxicidad , Estimulantes del Sistema Nervioso Central/farmacología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Células Cultivadas , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad
12.
Immunology ; 172(2): 210-225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366844

RESUMEN

Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.


Asunto(s)
Interleucina-10 , Ratones Transgénicos , Ovalbúmina , Estrés Psicológico , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ovalbúmina/inmunología , Estrés Psicológico/inmunología , Ratones , Interleucina-10/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Corticosterona/sangre , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Estrés del Retículo Endoplásmico/inmunología , Modelos Animales de Enfermedad , Restricción Física , Ratones Noqueados , Ratones Endogámicos C57BL , Hipersensibilidad Respiratoria/inmunología
13.
Curr Issues Mol Biol ; 46(5): 3839-3865, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785507

RESUMEN

Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan-Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC's pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them.

14.
Clin Immunol ; 260: 109923, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38316201

RESUMEN

Celiac Disease (CD) is a T-cell mediated disorder caused by immune response to gluten, although the mechanisms underlying CD progression are still elusive. We analyzed immune cell composition, plasma cytokines, and gliadin-specific T-cell responses in patients with positive serology and normal intestinal mucosa (potential-CD) or villous atrophy (acute-CD), and after gluten-free diet (GFD). We found: an inflammatory signature and the presence of circulating gliadin-specific IFN-γ+ T cells in CD patients regardless of mucosal damage; an increased frequency of IL-10-secreting dendritic cells (DC-10) in the gut and of circulating gliadin-specific IL-10-secreting T cells in potential-CD; IL-10 inhibition increased IFN-γ secretion by gliadin-specific intestinal T cells from acute- and potential-CD. On GFD, inflammatory cytokines normalized, while IL-10-producing T cells accumulated in the gut. We show that IL-10-producing cells are fundamental in controlling pathological T-cell responses to gluten: DC-10 protect the intestinal mucosa from damage and represent a marker of potential-CD.


Asunto(s)
Enfermedad Celíaca , Humanos , Gliadina , Interleucina-10 , Glútenes , Citocinas , Mucosa Intestinal
15.
J Clin Immunol ; 44(3): 67, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372823

RESUMEN

PURPOSE: Interleukin-10 receptor (IL-10R) deficiency can result in life-threatening very early-onset inflammatory bowel disease (VEO-IBD). Umbilical cord blood transplantation (UCBT) is a curative therapy for patients with IL-10R deficiency. This study aimed to investigate the efficacy of UCBT in treating IL-10R deficiency and develop a predictive model based on pre-transplant factors. METHODS: Eighty patients with IL-10R deficiency who underwent UCBT between July 2015 and April 2023 were retrospectively analyzed. Cox proportional hazards regression and random survival forest were used to develop a predictive model. RESULTS: Median age at transplant was 13.0 months (interquartile range [IQR], 8.8-25.3 months). With a median follow-up time of 29.4 months (IQR, 3.2-57.1 months), the overall survival (OS) rate was 65.0% (95% confidence interval [CI], 55.3%-76.3%). The engraftment rate was 85% (95% CI, 77%-93%). The cumulative incidences of acute and chronic graft-versus-host disease were 48.2% (95% CI, 37.1%-59.4%) and 12.2% (95% CI, 4.7%-19.8%), respectively. VEO-IBD-associated clinical symptoms were resolved in all survivors. The multivariate analysis showed that IL-6 and stool occult blood were independent prognostic risk factors. The multivariate Cox proportional hazards regression model with stool occult blood, length- or height-for-age Z-score, medical history of sepsis, and cord blood total nucleated cells showed good discrimination ability, with a bootstrap concordance index of 0.767-0.775 in predicting OS. CONCLUSION: Better inflammation control before transplantation and higher cord blood total nucleated cell levels can improve patient prognosis. The nomogram can successfully predict OS in patients with IL-10R deficiency undergoing UCBT.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Trasplante de Células Madre Hematopoyéticas , Enfermedades Inflamatorias del Intestino , Humanos , Lactante , Preescolar , Estudios Retrospectivos , Receptores de Interleucina-10 , Enfermedades Inflamatorias del Intestino/diagnóstico
16.
Cancer Immunol Immunother ; 73(2): 32, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279997

RESUMEN

The emergence of malignant ascites (MA) indicates poor prognoses in patients with ovarian, gastrointestinal, breast, and pancreatic cancer. Interleukin-10 (IL-10) is a pleiotropic cytokine with immunoregulatory effects in tumor microenvironment. The level of IL-10 in MA varied across cancer types and patients, influencing cancer progression and outcomes. Originating from various immune and cancer cells, IL-10 contributes to complex signaling pathways in MA. Systemic IL-10 administration, although the evidence of its efficacy on MA is limited, still emerges as a promising therapeutic strategy because it can increase CD8+ T cells cytotoxicity and invigorate exhausted CD8+ tumor infiltration lymphocytes (TILs) directly. IL-10 signaling blockade also demonstrates great potential when combined with other immunotherapies in MA treatment. We reviewed the levels, origins, and functions of IL-10 in malignant ascites and overviewed the current IL-10 signaling targeting therapies, aiming to provide insights for MA treatment.


Asunto(s)
Interleucina-10 , Neoplasias Peritoneales , Humanos , Ascitis , Linfocitos T CD8-positivos , Citocinas/metabolismo , Interleucina-10/metabolismo , Neoplasias Peritoneales/metabolismo , Microambiente Tumoral
17.
Biol Reprod ; 111(1): 76-91, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38501817

RESUMEN

Metabolism regulates the phenotype and function of macrophages. After recruitment to local tissues, monocytes are influenced by the local microenvironment and differentiate into various macrophages depending on different metabolic pathways. However, the metabolic mechanisms underlying decidual macrophage differentiation remain unknown. Interleukin-10 (IL-10) is an important decidual macrophage inducer and promotes oxidative phosphorylation (OXPHOS) of bone marrow-derived macrophages. In this study, we mainly investigate the metabolic changes involved in IL-10-generated macrophages from monocytes using in vitro models. We demonstrate that exposure of monocytes (either peripheral or THP-1) to IL-10 altered the phenotype and function of resultant macrophages that are linked with OXPHOS changes. Interleukin-10 enhanced the mitochondrial complex I and III activity of THP-1 cell-differentiated macrophages and increased the mitochondrial membrane potential, intracellular adenosine triphosphate, and reactive oxygen species levels. Oxidative phosphorylation blockage with oligomycin changed the cell morphology of IL-10-generated macrophages and the expression levels of cytokines, such as transforming growth factor beta, tumor necrosis factor-alpha, interferon gamma, and IL-10, apart from changes in the expression level of the surface markers CD206, CD209, and CD163. Moreover, in vivo IL-10 administration reduced the lipopolysaccharide (LPS)-induced embryo resorption rate, and this effect was diminished when OXPHOS was inhibited, demonstrating that OXPHOS is important for the improved pregnancy outcomes of IL-10 in LPS-induced abortion-prone mice. Our findings provide deep insights into the roles of IL-10 in macrophage biology and pregnancy maintenance. Nevertheless, the direct evidence that OXPHOS is involved in decidual macrophage differentiation needs further investigations.


Asunto(s)
Diferenciación Celular , Interleucina-10 , Macrófagos , Fosforilación Oxidativa , Femenino , Animales , Interleucina-10/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Embarazo , Diferenciación Celular/efectos de los fármacos , Resultado del Embarazo , Humanos
18.
Cytokine ; 176: 156513, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38262117

RESUMEN

OBJECTIVE: Our study aimed to differentiate patients with placenta accreta spectrum (PAS) from those with placenta previa (PP) using maternal serum levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-alpha), interleukin-4 (IL-4), and IL-10. METHODS: The case group consisted of 77 patients with placenta previa, and the control group consisted of 90 non-previa pregnant women. Of the pregnant women in the case group, 40 were diagnosed with PAS in addition to placenta previa and 37 had placenta previa with no invasion. The maternal serum VEGF, TNF-alpha, IL-4, and IL-10 levels were compared between the case and control groups. Then the success of these markers in differentiating between PP and PAS was evaluated. RESULTS: We found the VEGF, TNF-alpha, and IL-4 levels to be higher and the IL-10 level to be lower in the case group compared to the control group (p < 0.001). We observed a statistically significantly lower IL-10 level in the patients with PAS than those with PP (p = 0.029). In the receiver operating characteristic analysis, the optimal cut-off of IL-10 in the detection of PAS was 0.42 ng/mL). In multivariate analysis, the risk of PAS was significant for IL-10 (odds ratio (OR) 0.45, 95 % confidence interval (CI) 0.25-0.79, p = 0.006) and previous cesarean section (OR 2.50, 95 % Cl 1.34-4.66, p = 0.004). The model's diagnostic sensitivity and specificity, including previous cesarean section, preoperative hemoglobin (Hb), TNF-alpha, and IL-10 were 75 % and 72.9 %, respectively. CONCLUSION: The study showed that the IL-10 level was lower in patients with PAS than in those with PP. A statistical model combining risk factors including previous cesarean section, preoperative Hb, TNF-alpha, and IL-10 may improve clinical diagnosis of PAS in placenta previa cases. Cytokines may be used as additional biomarkers to the clinical risk factors in the diagnosis of PAS.


Asunto(s)
Placenta Accreta , Placenta Previa , Embarazo , Femenino , Humanos , Placenta Previa/diagnóstico , Placenta Previa/patología , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Placenta Accreta/diagnóstico , Placenta Accreta/patología , Interleucina-4 , Estudios Retrospectivos , Cesárea , Interleucina-10 , Placenta/patología
19.
Cytokine ; 179: 156593, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38581866

RESUMEN

OBJECTIVE: Intracranial infection is a common complication after neurosurgery and can increase the length of hospital stay, affect patient prognosis, and increase mortality. We aimed to investigate the value of the combined detection of cerebrospinal fluid (CSF) heparin-binding protein (HBP), interleukin-6 (IL-6), interleukin-10 (IL-10), and procalcitonin (PCT) for post-neurosurgical intracranial infection. METHODS: This study assessed the diagnostic values of CSF HBP, IL-6, IL-10, PCT levels, and combined assays for post-neurosurgical intracranial infection with the area under the receiver operating characteristic (ROC) curve by retrospectively analysing biomarkers of post-neurosurgical patients. RESULTS: The CSF HBP, IL-6, IL-10, and PCT levels were significantly higher in the infected group than the uninfected group and the control group (P < 0.001). The indicators in the groups with severe intracranial infections were significantly higher than those in the groups with mild intracranial infections (P < 0.001), and the groups with poor prognoses had significantly higher indexes than the groups with good prognoses. According to the ROC curve display, the AUC values of CSF HBP, IL-6, IL-10, and PCT were 0.977 (95 % CI 0.952-1.000), 0.973 (95 % CI 0.949-0.998), 0.884 (95 % CI 0.823-0.946), and 0.819 (95 % CI 0.733-0.904), respectively. The AUC of the combined test was 0.996 (95 % CI 0.989-1.000), which was higher than those of the four indicators alone. CONCLUSION: The combined detection can be an important indicator for the diagnosis and disease monitoring of post-neurosurgical intracranial infection.


Asunto(s)
Biomarcadores , Interleucina-10 , Interleucina-6 , Polipéptido alfa Relacionado con Calcitonina , Humanos , Polipéptido alfa Relacionado con Calcitonina/líquido cefalorraquídeo , Polipéptido alfa Relacionado con Calcitonina/sangre , Interleucina-10/líquido cefalorraquídeo , Masculino , Femenino , Interleucina-6/líquido cefalorraquídeo , Interleucina-6/sangre , Persona de Mediana Edad , Pronóstico , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Adulto , Anciano , Procedimientos Neuroquirúrgicos/efectos adversos , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/líquido cefalorraquídeo , Estudios Retrospectivos , Curva ROC , Proteínas Portadoras/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo/análisis , Péptidos Catiónicos Antimicrobianos
20.
Int Immunol ; 35(2): 55-65, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36153768

RESUMEN

B cells include immune-suppressive fractions, called regulatory B cells (Bregs), which regulate inflammation primarily through an interleukin 10 (IL-10)-mediated inhibitory mechanism. Several B-cell fractions have been reported as IL-10-producing Bregs in murine disease models and human inflammatory responses including autoimmune diseases, infectious diseases, cancer and organ-transplant rejection. Although the suppressive functions of Bregs have been explored through the hallmark molecule IL-10, inhibitory cytokines and membrane-binding molecules other than IL-10 have also been demonstrated to contribute to Breg activities. Transcription factors and surface antigens that are characteristically expressed in Bregs are also being elucidated. Nevertheless, defining Bregs is still challenging because their active periods and differentiation stages vary among disease models. The identity of the diverse Breg fractions is also under debate. In the first place, since regulatory functions of Bregs are mostly evaluated by ex vivo stimulation, the actual in vivo phenotypes and functions may not be reflected by the ex vivo observations. In this article, we provide a historical overview of studies that established the characteristics of Bregs and review the various suppressive mechanisms that have been reported to be used by Bregs in murine and human disease conditions. We are only part-way through but the common phenotypes and functions of Bregs are still emerging.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B Reguladores , Humanos , Ratones , Animales , Interleucina-10 , Inflamación , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA