Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 22(10)2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29023410

RESUMEN

The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.


Asunto(s)
Corazón/efectos de los fármacos , Corazón/fisiología , Miocardio/metabolismo , alfa-MSH/administración & dosificación , Animales , Biomarcadores , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Ecocardiografía , Prueba de Tolerancia a la Glucosa , Corazón/diagnóstico por imagen , Bombas de Infusión , Masculino , Contracción Miocárdica/efectos de los fármacos , NADPH Oxidasas/metabolismo , Ratas , Ratas Zucker , Función Ventricular Izquierda/efectos de los fármacos
2.
Am J Physiol Heart Circ Physiol ; 306(1): H78-87, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186097

RESUMEN

In mice, genetic background is known to influence various parameters, including cardiac function. Its impact on cardiac energy substrate metabolism-a factor known to be closely related to function and contributes to disease development-is, however, unclear. This was examined in this study. In commonly used control mouse substrains SJL/JCrNTac, 129S6/SvEvTac, C57Bl/6J, and C57Bl/6NCrl, we assessed the functional and metabolic phenotypes of 3-mo-old working mouse hearts perfused ex vivo with physiological concentrations of (13)C-labeled carbohydrates (CHO) and a fatty acid (FA). Marked variations in various functional and metabolic flux parameters were observed among all mouse substrains, although the pattern observed differed for these parameters. For example, among all strains, C57Bl/6NCrl hearts had a greater cardiac output (+1.7-fold vs. SJL/JCrNTac and C57Bl/6J; P < 0.05), whereas at the metabolic level, 129S6/SvEvTac hearts stood out by displaying (vs. all 3 strains) a striking shift from exogenous FA (~-3.5-fold) to CHO oxidation as well as increased glycolysis (+1.7-fold) and FA incorporation into triglycerides (+2-fold). Correlation analyses revealed, however, specific linkages between 1) glycolysis, FA oxidation, and pyruvate metabolism and 2) cardiac work, oxygen consumption with heart rate, respectively. This implies that any genetically determined factors affecting a given metabolic flux parameter may impact on the associated functional parameters. Our results emphasize the importance of selecting the appropriate control strain for cardiac metabolic studies using transgenic mice, a factor that has often been neglected. Understanding the molecular mechanisms underlying the diversity of strain-specific cardiac metabolic and functional profiles, particularly the 129S6/SvEvTac, may ultimately disclose new specific metabolic targets for interventions in heart disease.


Asunto(s)
Metabolismo Basal/genética , Gasto Cardíaco/genética , Corazón/fisiología , Ratones Endogámicos/fisiología , Miocardio/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Glucólisis , Peroxidación de Lípido , Ratones , Ratones Endogámicos/genética , Ratones Endogámicos/metabolismo , Consumo de Oxígeno , Ácido Pirúvico/metabolismo , Especificidad de la Especie , Triglicéridos/metabolismo
3.
ESC Heart Fail ; 7(5): 2113-2122, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32639674

RESUMEN

AIMS: Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS: Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS: Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.


Asunto(s)
Infarto del Miocardio , Tenascina , Angiotensinas , Animales , Dilatación , Matriz Extracelular , Ratones , Ratones Noqueados , Infarto del Miocardio/complicaciones , Tenascina/genética , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA