Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315242

RESUMEN

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Humanos , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Funcion de la Barrera Intestinal , Estudios de Casos y Controles , Inflamación , Obesidad/complicaciones , ARN Mensajero/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopresinas/metabolismo
2.
J Proteome Res ; 23(4): 1506-1518, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422518

RESUMEN

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Asunto(s)
Proteoma , Esterol Esterasa , Animales , Ratones , Ésteres del Colesterol/metabolismo , Yeyuno , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Proteoma/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Humanos
3.
Histochem Cell Biol ; 161(4): 325-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216701

RESUMEN

Su (var) 3-9, enhancer of seste, trithorax (SET)-domain bifurcated histone lysine methyltransferase (SETDB1) plays a crucial role in maintaining intestinal stem cell homeostasis; however, its physiological function in epithelial injury is largely unknown. In this study, we investigated the role of SETDB1 in epithelial regeneration using an intestinal ischemia/reperfusion injury (IRI) mouse model. Jejunum tissues were sampled after 75 min of ischemia followed by 3, 24, and 48 h of reperfusion. Morphological evaluations were performed using light microscopy and electron microscopy, and the involvement of SETDB1 in epithelial remodeling was investigated by immunohistochemistry. Expression of SETDB1 was increased following 24 h of reperfusion and localized in not only the crypt bottom but also in the transit amplifying zone and part of the villi. Changes in cell lineage, repression of cell adhesion molecule expression, and decreased histone H3 methylation status were detected in the crypts at the same time. Electron microscopy also revealed aberrant alignment of crypt nuclei and fusion of adjacent villi. Furthermore, increased SETDB1 expression and epithelial remodeling were confirmed with loss of stem cells, suggesting SETDB1 affects epithelial cell plasticity. In addition, crypt elongation and increased numbers of Ki-67 positive cells indicated active cell proliferation after IRI; however, the expression of PCNA was decreased compared to sham mouse jejunum. These morphological changes and the aberrant expression of proliferation markers were prevented by sinefungin, a histone methyltransferase inhibitor. In summary, SETDB1 plays a crucial role in changes in the epithelial structure after IRI-induced stem cell loss.


Asunto(s)
Intestinos , Daño por Reperfusión , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , Daño por Reperfusión/metabolismo , Células Epiteliales/metabolismo , Isquemia/metabolismo
4.
Histochem Cell Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110194

RESUMEN

The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.

5.
Vet Res ; 55(1): 30, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493107

RESUMEN

Epithelial damage due to gastrointestinal disorders frequently causes severe disease in horses. To study the underlying pathophysiological processes, we aimed to establish equine jejunum and colon enteroids (eqJE, eqCE) mimicking the in vivo epithelium. Therefore, enteroids were cultivated in four different media for differentiation and subsequently characterized histomorphologically, on mRNA and on protein level in comparison to the native epithelium of the same donor horses to identify ideal culture conditions for an in vitro model system. With increasing enterocyte differentiation, the enteroids showed a reduced growth rate as well as a predominantly spherical morphology and less budding compared to enteroids in proliferation medium. Combined or individual withdrawal of stem cell niche pathway components resulted in lower mRNA expression levels of stem cell markers and concomitant differentiation of enterocytes, goblet cells and enteroendocrine cells. For eqCE, withdrawal of Wnt alone was sufficient for the generation of differentiated enterocytes with a close resemblance to the in vivo epithelium. Combined removal of Wnt, R-spondin and Noggin and the addition of DAPT stimulated differentiation of eqJE at a similar level as the in vivo epithelium, particularly with regard to enterocytes. In summary, we successfully defined a medium composition that promotes the formation of eqJE and eqCE consisting of multiple cell types and resembling the in vivo epithelium. Our findings emphasize the importance of adapting culture conditions to the respective species and the intestinal segment. This in vitro model will be used to investigate the pathological mechanisms underlying equine gastrointestinal disorders in future studies.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades de los Caballos , Animales , Caballos , Mucosa Intestinal , Intestinos , Diferenciación Celular , Enfermedades Gastrointestinales/veterinaria , ARN Mensajero
6.
Br J Nutr ; 131(8): 1289-1297, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38053344

RESUMEN

This study investigated the effects of Lacticaseibacillus rhamnosus HN001 supplementation on the architecture and gene expression in small intestinal tissues of piglets used as an animal model for infant humans. Twenty-four 10-d-old entire male piglets (4·3 (sd 0·59) kg body weight) were fed an infant formula (IF) (control) or IF supplemented with 1·3 × 105 (low dose) or 7·9 × 106 (high dose) colony-forming units HN001 per ml of reconstituted formula (n 8 piglets/treatment). After 24 d, piglets were euthanised. Samples were collected to analyse the histology and gene expression (RNAseq and qPCR) in the jejunal and ileal tissues, blood cytokine concentrations, and blood and faecal calprotectin concentrations. HN001 consumption altered (false discovery rate < 0·05) gene expression (RNAseq) in jejunal tissues but not in ileal tissues. The number of ileal goblet cells and crypt surface area increased quadratically (P < 0·05) as dietary HN001 levels increased, but no increase was observed in the jejunal tissues. Similarly, blood plasma concentrations of IL-10 and calprotectin increased linearly (P < 0·05) as dietary HN001 levels increased. In conclusion, supplementation of IF with HN001 affected the architecture and gene expression of small intestine tissue, blood cytokine concentration and frequencies, and blood calprotectin concentrations, indicating that HN001 modulated small intestinal tissue maturation and immunity in the piglet model.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos , Humanos , Lactante , Animales , Masculino , Porcinos , Probióticos/uso terapéutico , Suplementos Dietéticos , Íleon , Citocinas/genética , Complejo de Antígeno L1 de Leucocito , Expresión Génica
7.
Biometals ; 37(2): 421-432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37991682

RESUMEN

Copper (Cu) is an essential trace element that plays a crucial role in numerous physiopathological processes related to human and animal health. In the poultry industry, Cu is used to promote growth as a feed supplement, but excessive use can lead to toxicity on animals. Cytochrome P450 enzymes (CYP450s) are a superfamily of proteins that require heme as a cofactor and are essential for the metabolism of xenobiotic compounds. The purpose of this study was to explore the influence of exposure to Cu on CYP450s activity and apoptosis in the jejunum of broilers. Hence, we first simulated the Cu exposure model by feeding chickens diets containing different amounts of Cu. In the present study, histopathological observations have revealed morphological damage to the jejunum. The expression levels of genes and proteins of intestinal barrier markers were prominently downregulated. While the mRNA expression level of the gene associated with CYP450s was significantly increased. Additionally, apoptosis-related genes and proteins (Bak1, Bax, Caspase-9, Caspase-3, and CytC) were also significantly augmented by excessive Cu, while simultaneously decreasing the expression of Bcl-2. It can be concluded that long-term Cu exposure affects CYP450s activity, disrupts intestinal barrier function, and causes apoptosis in broilers that ultimately leads to jejunum damage.


Asunto(s)
Pollos , Oligoelementos , Humanos , Animales , Pollos/metabolismo , Yeyuno , Apoptosis , Cobre/toxicidad , Cobre/metabolismo , Oligoelementos/metabolismo , Dieta
8.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831422

RESUMEN

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Asunto(s)
Adenosina Trifosfatasas , Antioxidantes , Microbioma Gastrointestinal , Yeyuno , Animales , Yeyuno/microbiología , Yeyuno/enzimología , Antioxidantes/metabolismo , Microbioma Gastrointestinal/fisiología , Adenosina Trifosfatasas/metabolismo , Ovinos , Masculino , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
9.
J Pak Med Assoc ; 74(1): 158-160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219190

RESUMEN

Crohn's disease (CD) affecting the jejunum and ileum is uncommon and its diagnosis can be challenging. This case report describes a 35 year old male patient who had been e xper iencing intermi ttent periu mbilica l pain , di arrho ea and fever for five years. Despite undergoing gastroscopy, co lo noscopy and capsule endoscopy; no s ignific ant abnormal ities were found. This case was se en at the Shenzhen Ho spital of Traditional Chinese Medi ci ne; Shenzhen, China. However, the pa tient u nder went a doubl e-balloon enteroscopy (DBE), which revealed multip le ulcers in the jejunum and ileum, leadin g to a confirmed diagnosis of CD. The patient was successfully treated with infliximab t o rel ieve sy mptoms. DBE can be par ticularly valuable in diagnosing CD in young patients with symptoms when conventional endoscopic techniques have been unsuccessfu l. This case highlights the impor tance of considering small bowel disease in patients wit h CD symptoms and the potential benefits of DBE in diagnosing such cases.


Asunto(s)
Enfermedad de Crohn , Masculino , Humanos , Adulto , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/terapia , Yeyuno/diagnóstico por imagen , Intestino Delgado , Enteroscopía de Doble Balón/métodos , Íleon/diagnóstico por imagen
10.
Trop Anim Health Prod ; 56(3): 123, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613703

RESUMEN

Excess levels of free radicals cause oxidative damage to cells. Taurine is a rare amino acid with antioxidant effects whose dietary deficiency increases oxidative damage to the cell membrane. To investigate the effects of dietary taurine supplementation on performance, blood hematology, oxidative stress, and jejunum morphology in broilers, 300 broilers (Ras 308, 1D of age) were randomly allocated into 4 groups with 5 replicates of 15 birds. The experimental treatments included basic diet (control treatment) and basic diet with 1, 3, and 6 g/kg taurine amino acid. During 1 to 45 days, the inclusion of taurine supplementation in diets improved the body weight gain (BWG), feed consumption (FC), and feed conversion ratio (FCR) of broilers (P < 0.05). In CBC tests, the experimental treatments were significantly different concerning the red blood cell (RBC) count, the average hemoglobin in the cell, the RBC width in the curve, and the hematocrit (P < 0.05). Despite the significance of oxidative stress among the treatments, the control and fourth treatments showed the highest and the lowest oxidative stress, respectively (P < 0.05). Also, in jejunum morphology, the fourth treatment showed the best performance in terms of villus length and width and the villus length to crypt depth (V/C) ratio (P < 0.05). Overall, 6 g/kg taurine addition to the diet reduced oxidative stress and positive features in the jejunum morphology while improving the functional traits of broilers.


Asunto(s)
Pollos , Hematología , Animales , Taurina/farmacología , Yeyuno , Estrés Oxidativo , Aminoácidos , Suplementos Dietéticos
11.
J Physiol ; 601(7): 1183-1206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752210

RESUMEN

The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 µM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 µM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.


Asunto(s)
Calcio , Sistema Nervioso Entérico , Ratones , Animales , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Intestino Delgado , Yeyuno , Colon/fisiología , Plexo Mientérico
12.
Pflugers Arch ; 475(8): 945-960, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37261509

RESUMEN

Proper food intake is important for maintaining good health in humans. Chocolate is known to exert anti-inflammatory effects; however, the mechanisms remain unclear. In this study, we aimed to investigate the effects of cocoa butter intake on gut immunity in rats and rabbits. Cocoa butter intake increased the lymph flow, cell density, and IL-1ß, IL-6 and IL-10 levels in mesenteric lymph. Clodronate, a macrophage depletion compound, significantly enhanced the release of all cytokines. The immunoreactivities of macrophage markers CD68 and F4/80 in the jejunal villi were significantly decreased with clodronate. Piceatannol, a selective cell surface ATP synthase inhibitor significantly reduced the cocoa butter intake-mediated releases of IL-1ß, IL-6 and IL-10. The immunoreactivities of cell surface ATP synthase were observed in rat jejunal villi. Shear stress stimulation on the myofibroblast cells isolated from rat jejunum released ATP and carbon dioxide depended with H+ release. In rabbit in vivo experiments, cocoa butter intake increased the concentrations of ATP and H+ in the portal vein. The in vitro experiments with isolated cells of rat jejunal lamina propria the pH of 3.0 and 5.0 in the medium released significantly IL-1ß and IL-6. ATP selectively released IL-10. These findings suggest that cocoa butter intake regulates the gut immunity through the release and transport of IL-1ß, IL-6, and IL-10 into mesenteric lymph vessels in a negative feedback system. In addition, the H+ and ATP released from cell surface ATP synthase in jejunal villi play key roles in the cocoa butter intake-mediated regulation of gut immunity.


Asunto(s)
Chocolate , Grasas de la Dieta , Tracto Gastrointestinal , ATPasas de Translocación de Protón , Animales , Ratas , Conejos , Grasas de la Dieta/administración & dosificación , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Masculino , Ratas Sprague-Dawley , Linfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-10/metabolismo , Ácido Clodrónico , Yeyuno/metabolismo , Resistencia al Corte , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Células Cultivadas , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/metabolismo
13.
BMC Genomics ; 24(1): 274, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217865

RESUMEN

The risk of exposure of the general public or military personnel to high levels of ionizing radiation from nuclear weapons or radiological accidents is a dire national security matter. The development of advanced molecular biodosimetry methods, those that measure biological response, such as transcriptomics, to screen large populations of radiation-exposed victims is key to improving survival outcomes during radiological mass casualty scenarios. In this study, nonhuman primates were exposed to either 12.0 Gy cobalt-60 gamma (total-body irradiation, TBI) or X-ray (partial-body irradiation, PBI) 24 h after administration of a potential radiation medical countermeasure, gamma-tocotrienol (GT3). Changes in the jejunal transcriptomic profiles in GT3-treated and irradiated animals were compared to healthy controls to assess the extent of radiation damage. No major effect of GT3 on radiation-induced transcriptome at this radiation dose was identified. About 80% of the pathways with a known activation or repression state were commonly observed between both exposures. Several common pathways activated due to irradiation include FAK signaling, CREB signaling in the neurons, phagosome formation, and G-protein coupled signaling pathway. Sex-specific differences associated with excessive mortality among irradiated females were identified in this study, including Estrogen receptor signaling. Differential pathway activation was also identified across PBI and TBI, pointing towards altered molecular response for different degrees of bone marrow sparing and radiation doses. This study provides insight into radiation-induced changes in jejunal transcriptional profiles, supporting the investigation for the identification of biomarkers for radiation injury and countermeasure efficacy.


Asunto(s)
Síndrome de Radiación Aguda , Transcriptoma , Masculino , Animales , Femenino , Síndrome de Radiación Aguda/tratamiento farmacológico , Yeyuno , Radiación Ionizante , Primates
14.
Ann Surg Oncol ; 30(9): 5761-5762, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37314546

RESUMEN

BACKGROUND: Central pancreatectomy (CP) has been established as the most common type of parenchyma-sparing pancreatectomy;1 however, CP is associated with higher morbidity and a higher pancreatic fistula (PF) rate than distal pancreatectomy or pancreaticoduodenectomy.2,3 The jejunum patch technique (JPT) for distal pancreatectomy has recently been applied, which efficiently decreases the incidence of PF.4 We have adapted this technique to CP as well as distal pancreatectomy with celiac axis resection.5 Here, we retrospectively evaluated the usefulness of JPT for open CP cases, and report the experience of robot-assisted CP using the JPT. METHODS: Among 37 consecutive cases who underwent CP at our institution between 2011 and 2022, clinical characteristics and postoperative short-term outcomes were compared between patients who underwent CP with and without the JPT. In robot-assisted CP using the JPT, after resection of the middle of the pancreas the transected jejunum was elevated through the retrocolic route in a Roux-en-Y fashion. The pancreatic stump was covered by the JPT using a modified Blumgart technique, following pancreaticojejunostomy for the distal side.6 RESULTS: Among the entire cohort, 19 patients underwent CP using the JPT. The clinically relevant PF rate of the JPT group was significantly lower (47.4%) than the no-JPT group (83.3%, p = 0.022), and the length of drainage and hospital stay were shorter in the JPT group (p= 0.010 and p = 0.017, respectively). The blood loss of robot-assisted CP using the JPT was 20 mL, and the JPT took only 15 min. CONCLUSION: Robot-assisted CP using the JPT is an easy-to-use and promising procedure, based on experience and outcomes from open surgery.


Asunto(s)
Neoplasias Pancreáticas , Robótica , Humanos , Pancreatectomía/métodos , Yeyuno/cirugía , Estudios Retrospectivos , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/complicaciones , Fístula Pancreática/etiología , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento
15.
Ecotoxicol Environ Saf ; 256: 114851, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004430

RESUMEN

Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 â„ƒ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.


Asunto(s)
Pollos , Yeyuno , Animales , Embrión de Pollo , Yeyuno/metabolismo , FN-kappa B/metabolismo , Lipopolisacáridos , Canales Catiónicos TRPV/efectos adversos , Respuesta al Choque Térmico , Citocinas/metabolismo , Inflamación/inducido químicamente
16.
Microsc Microanal ; 29(2): 841-857, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37749735

RESUMEN

Perfluorooctane sulfonate (PFOS) has harmful impacts on various organs, including the intestine. Lemongrass essential oil (LGEO) has anti-inflammatory, anti-oxidant, antibacterial, and immunomodulatory effects. This study investigated the impact of PFOS on the mucosa of the jejunum of rats and evaluated LGEO's protective impact. Four groups of rats were created: control, LGEO (100 mg/kg/day), PFOS (5 mg/kg/day), and LGEO-PFOS group. The agents were given orally for 28 days. Oxidative stress parameters, pro-inflammatory cytokines, and caspase-3 were measured in jejunal homogenates. Rat jejunal sections were evaluated histologically (light and electron microscopic examination) and immunohistochemically [for tumor necrosis factor-α (TNF-α), Proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX2), and Bcl2]. PFOS significantly elevated oxidative stress, pro-inflammatory cytokines, caspase-3, and gene expression of nuclear factor kappa B (NF-kB) and inducible nitric oxide synthetase (iNOS). The disturbed architecture of jejunal villi and crypts was demonstrated. Immunohistochemically, a significant rise in TNF-α, PCNA, and COX2 and a significant decrease in Bcl2 expression were revealed compared to control group. Further ultrastructural alterations included dilated RER, mitochondria with destroyed cristae, vacuolated cytoplasm, and shrunken condensed nuclei of enterocytes. LGEO treatment significantly reduced these harmful effects. LGEO protected against PFOS-induced jejunal damage by reducing the oxidative, inflammatory, and apoptotic impacts.


Asunto(s)
Cymbopogon , Yeyuno , Animales , Ratas , Caspasa 3 , Antígeno Nuclear de Célula en Proliferación , Ciclooxigenasa 2 , Factor de Necrosis Tumoral alfa , Antioxidantes , Citocinas
17.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511079

RESUMEN

The aim of this study is to assess the effect of different forms and dosages of copper on the levels of markers depicting the neurodegenerative changes in the brain and the jejunum. The experiment was performed using 40 male Wistar rats fed a typical rat diet with two dosages of Cu used as CuCO3 (6.5 and 13 mg/kg diet) and dietary addition of two CuNP dosages (standard 6.5 and enhanced 13 mg/kg diet), randomly divided into four groups. The levels of neurodegenerative markers were evaluated. Nanoparticles caused a reduction in the level of glycosylated acetylcholinesterase (GAChE), an increase the level of acetylcholinesterase (AChE) and lipoprotein receptor-related protein 1 (LRP1), a reduction in ß-amyloid (ßAP) in the brain and in the intestine of rats and a reduction in Tau protein in the brain of rats. The highest levels of AChE, the ATP-binding cassette transporters (ABC) and LRP1 and lower levels of toxic GAChE, ß-amyloid, Tau, hyper-phosphorylated Tau protein (p-Tau) and the complex of calmodulin and Ca2+ (CAMK2a) were recorded in the tissues of rats receiving a standard dose of Cu. The neuroprotective effect of Cu can be increased by replacing the carbonate form with nanoparticles and there is no need to increase the dose of copper.


Asunto(s)
Cobre , Nanopartículas , Ratas , Masculino , Animales , Cobre/metabolismo , Ratas Wistar , Acetilcolinesterasa/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Intestinos , Péptidos beta-Amiloides/metabolismo
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003728

RESUMEN

Smooth muscle tissue (SMT) is one of the main structural components of visceral organs, acting as a key factor in the development of adaptive and pathological conditions. Despite the crucial part of SMT in the gastrointestinal tract activity, the mechanisms of its gravisensitivity are still insufficiently studied. The study evaluated the content of smooth muscle actin (α-SMA) in the membranes of the gastric fundus and jejunum in C57BL/6N mice (30-day space flight), in Mongolian gerbils Meriones unguiculatus (12-day orbital flight) and after anti-orthostatic suspension according to E.R. Morey-Holton. A morphometric analysis of α-SMA in the muscularis externa of the stomach and jejunum of mice and Mongolian gerbils from space flight groups revealed a decreased area of the immunopositive regions, a fact indicating a weakening of the SMT functional activity. Gravisensitivity of the contractile structures of the digestive system may be due to changes in the myofilament structural components of the smooth myocytes or myofibroblast actin. A simulated antiorthostatic suspension revealed no significant changes in the content of the α-SMA expression level, a fact supporting an alteration in the functional properties of the muscularis externa of the digestive hollow organs under weightless environment. The data obtained contribute to the novel mechanisms of the SMT contractile apparatus remodeling during orbital flights and can be used to improve preventive measures in space biomedicine.


Asunto(s)
Actinas , Yeyuno , Animales , Ratones , Actinas/metabolismo , Yeyuno/metabolismo , Gerbillinae/metabolismo , Ratones Endogámicos C57BL , Estómago , Músculo Liso/metabolismo
19.
HNO ; 71(12): 795-801, 2023 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-37707515

RESUMEN

BACKGROUND: Persistent complex defects and dysfunctions of the upper aerodigestive tract after tumor surgery represent a major challenge. The aim of this study was to evaluate the effectiveness of an interdisciplinary approach using the free anterolateral thigh flap (ALT) as a reconstruction option in the upper aerodigestive tract. MATERIALS AND METHODS: The retrospective study identified 5 patients with complex defects after laryngectomy/pharyngolaryngectomy (LE/PLE) and multiple revision surgeries between 2017 and 2023. The operations were performed by an interdisciplinary team from otolaryngology, plastic surgery, and visceral/thoracic surgery. The results of the microsurgical reconstruction were analyzed. RESULTS: There was an average of six previous operations. The defects included tracheoesophageal fistulas, pharyngocutaneous fistulas, neopharyngeal stenosis, and combinations thereof. Successful reconstruction was achieved in 100% of patients using the ALT flap. In 2 patients, ALT flow-through flaps were used with an additional free jejunal interposition (JI) and in 3 patients split-ALT flaps were used. The major complication rate was 40% and the minor complication rate was 20%. CONCLUSION: Complex defects of the upper aerodigestive tract with multiple previous operations can be successfully reconstructed. Because of its versatility, the ALT flap seems to be a very good option. Prerequisite for this is an interdisciplinary treatment approach with a critical assessment of patient- and disease-specific factors.


Asunto(s)
Fístula Cutánea , Colgajos Tisulares Libres , Procedimientos de Cirugía Plástica , Humanos , Estudios Retrospectivos , Algoritmos
20.
Esophagus ; 20(3): 427-434, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36899133

RESUMEN

BACKGROUND: Cervical esophageal cancer accounts for a small proportion of all esophageal cancers. Therefore, studies examining this cancer include a small patient cohort. Most patients with cervical esophageal cancer undergo reconstruction using a gastric tube or free jejunum after esophagectomy. We examined the current status of postoperative morbidity and mortality of cervical esophageal cancer based on big data. METHODS: Based on the Japan National Clinical Database, 807 surgically treated patients with cervical esophageal cancer were enrolled between January 1, 2016, and December 31, 2019. Surgical outcomes were retrospectively reviewed for each reconstructed organ using gastric tubes and free jejunum. RESULTS: The incidence of postoperative complications related to reconstructed organs was higher in the gastric tube reconstruction (17.9%) than in the free jejunum (6.7%) for anastomotic leakage (p < 0.01), but not significantly different for reconstructed organ necrosis (0.4% and 0.3%, respectively). The incidence rates of overall morbidity, pneumonia, 30-day reoperation, tracheal necrosis, and 30-day mortality using these reconstruction methods were 64.7% and 59.7%, 16.7% and 11.1%, 9.3% and 11.4%, 2.2% and 1.6%, and 1.2% and 0.0%, respectively. Only pneumonia was more common in the gastric tube reconstruction group (p = 0.03), but was not significantly different for any other complication. CONCLUSIONS: The incidence of overall morbidities and reoperation, especially anastomotic leakage after gastric tube reconstruction, suggested a necessity for further improvement. However, the incidence of fatal complications, such as tracheal necrosis or reconstructed organ necrosis, was low for both reconstruction methods, and the mortality rate was acceptable as a means of radical treatment.


Asunto(s)
Neoplasias Esofágicas , Yeyuno , Humanos , Yeyuno/cirugía , Fuga Anastomótica/epidemiología , Fuga Anastomótica/etiología , Fuga Anastomótica/cirugía , Estudios Retrospectivos , Japón/epidemiología , Neoplasias Esofágicas/cirugía , Resultado del Tratamiento , Necrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA