Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2317300121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470924

RESUMEN

Perfluoroalkyl substances (PFAS), known as "forever chemicals," are a growing concern in the sphere of human and environmental health. In response, rapid, reproducible, and inexpensive methods for PFAS detection in the environment and home water supplies are needed. We have developed a simple and inexpensive perfluoroalkyl acid detection method based on an electrically read lateral flow assay (e-LFA). Our method employs a fluorous surfactant formulation with undoped polyaniline (F-PANI) fabricated to create test lines for the lateral flow assay. In perfluoroalkyl acid sensing studies, an increase in conductivity of the F-PANI film is caused by acidification and doping of PANI. A conductivity enhancement by 104-fold can be produced by this method, and we demonstrate a limit of detection for perfluorooctanoic acid (PFOA) of 400 ppt and perfluorobutanoic acid of 200 ppt. This method for PFOA detection can be expanded for wide-scale environmental and at-home water testing.

2.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739779

RESUMEN

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Asunto(s)
Cobre , Oro , Nanopartículas del Metal , Titanio , Nanopartículas del Metal/química , Titanio/química , Oro/química , Cobre/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/economía , Humanos , COVID-19/virología , COVID-19/diagnóstico , Oro Coloide/química , SARS-CoV-2/aislamiento & purificación
3.
Small ; 20(21): e2309956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145329

RESUMEN

Lateral-flow assay (LFA) is one of the most commonly used detection technologies, in which the chromatographic membranes are currently used as the lateral-flow membrane (e.g., nitrocellulose membrane, NC Mem). However, several disadvantages of existing chromatographic membranes limit the performance of LFA, including relatively low flow velocity of sample solution and relatively more residuals of sample on membrane, which increase detection time and detection noise. Herein, a surface structure membrane (SS Mem) is proposed, which enables fast self-transport of water with a convection manner and realizes low residuals of sample on membrane surface after the flow. On SS Mem, the flow velocity of water is 7.1-fold higher, and the residuals of sample are decreased by 60-67%, comparing those in NC Mem. SS Mem is used as lateral-flow membrane to prepare lateral-flow strips of nanogold LFA and fluorescence LFA for rapid detection of SARS CoV-2 nucleocapsid protein. These LFAs require 210 s per detection, with limits of detection of 3.98 pg mL-1 and 53.3 fg mL-1, sensitivity of 96.5%, and specificity of 90%. The results suggest that SS Mem enables ultrafast, highly sensitive lateral-flow immunoassays and shows great potential as a new type of lateral-flow membrane to broaden the application of LFA.


Asunto(s)
SARS-CoV-2 , Agua , Agua/química , SARS-CoV-2/aislamiento & purificación , Membranas Artificiales , COVID-19 , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Humanos
4.
Chembiochem ; 25(3): e202300575, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963820

RESUMEN

Salmonella constitutes a prevalent alimentary pathogen, instigating zoonotic afflictions. Consequently, the prompt discernment of Salmonella in sustenance is of cardinal significance. Lateral flow assays utilizing colorimetric methodologies adequately fulfill the prerequisites of point-of-care diagnostics, however, their detection threshold remains elevated, generally permitting only qualitative discernment, an impediment to the preliminary screening of nascent pathogens. In response to this conundrum, we propose a lateral flow diagnostic predicated upon a streptavidin-biotin amplification system with recombinase polymerase amplification engineered for the expeditious and quantitative discernment of Salmonella enteritidis. Trace nucleic acids within a sample undergo exponential amplification via recombinase polymerase amplification to a level discernable, constituting the initial signal amplification. Subsequently, along the test line (T-line) of the lateral flow strip, the chromatic signal undergoes augmentation by securing a greater quantity of AuNPs through the magnification capacity of the streptavidin-biotin mechanism, affecting the second signal amplification. Quantitative results are procured via smartphone capture and transferred to computer software for precise calculation of the targeted quantity. The lateral flow strip exhibits a LOD at 19.41 CFU/mL for cultured S. enteritidis. The RSD of three varying concentrations were respectively 3.74 %, 5.96 %, and 4.25 %.


Asunto(s)
Nanopartículas del Metal , Salmonella enteritidis , Salmonella enteritidis/genética , Biotina , Estreptavidina , Recombinasas , Oro , Nucleotidiltransferasas , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
5.
J Med Virol ; 96(2): e29409, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38293790

RESUMEN

Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Papillomaviridae/genética , Tecnología
6.
Microb Pathog ; 195: 106885, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182857

RESUMEN

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) are three clinically common coronaviruses causing diarrhea in pigs, with indistinguishable clinical signs and pathological changes. Rapid, portable and reliable differential diagnosis of these three pathogens is crucial for the prompt implementation of appropriate control measures. In this study, we developed a triplex nucleic acid assay that combines reverse transcription recombinase-aided amplification (RT-RAA) with lateral flow assay (LFA) by targeting the most conserved genomic region in the ORF1b genes of PEDV, PDCoV and TGEV. The entire detection process of the triplex RT-RAA-LFA assay included 10-min nucleic acid amplification at 42 °C and 5-min visual LFA readout at room temperature. The assay could specifically differentiate PEDV, PDCoV and TGEV without cross-reaction with any other major swine pathogens. Sensitivity analysis showed that the triplex RT-RAA-LFA assay was able to detect the viral RNA extracted from the spiked fecal samples with the minimum of 1 × 100 TCID50 PEDV, 1 × 104 TCID50 PDCoV, and 1 × 102 TCID50 TGEV per reaction, respectively. Further analysis showed that the 95 % detection limit (LOD) of triplex RT-RAA-LFA for PEDV, PDCoV, and TGEV were 22, 478, and 205 copies of recombinant plasmids per reaction, respectively. The diagnostic performance of triplex RT-RAA-LFA was compared with that of PEDV, PDCoV and TGEV respective commercial real-time RT-PCR kits by testing 114 clinical rectal swab samples in parallel. The total diagnostic coincidence rates of triplex RT-RAA-LFA with real-time RT-PCR kits of PEDV, PDCoV and TGEV were 100 %, 99.1 % and 99.1 %, respectively, and their Kappa values were 1.00, 0.958 and 0.936, respectively. Collectively, the RT-RAA-LFA assay is a powerful tool for the rapid, portable, visual, and synchronous differential diagnosis of PEDV, PDCoV, and TGEV.


Asunto(s)
Infecciones por Coronavirus , Deltacoronavirus , Heces , Técnicas de Amplificación de Ácido Nucleico , Virus de la Diarrea Epidémica Porcina , ARN Viral , Sensibilidad y Especificidad , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virus de la Gastroenteritis Transmisible/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/genética , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Heces/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Diagnóstico Diferencial , Deltacoronavirus/aislamiento & purificación , Deltacoronavirus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Gastroenteritis Porcina Transmisible/diagnóstico , Gastroenteritis Porcina Transmisible/virología , Técnicas de Diagnóstico Molecular/métodos , Diarrea/virología , Diarrea/veterinaria , Diarrea/diagnóstico
7.
Microb Pathog ; 196: 106959, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303955

RESUMEN

Hirame novirhabdovirus (HIRRV) is a highly pathogenic fish virus that poses a significant threat to the farming of a variety of economic fish. Due to no commercial vaccines and effective drugs available, sensitive and rapid detection of HIRRV at latent and early stages is important and critical for the control of disease outbreaks. However, most of the current methods for HIRRV detection have a large dependence on instruments and operations. For better detection of HIRRV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of HIRRV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 40 °C and 32min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15min. The whole detection procedure including can be accomplished within 1 h, with a detection sensitivity of about 8.7 copies/µl. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses IHNV and VHSV, allowing naked-eye color-based interpretation of the detection results through lateral flow (LF) strip or fluorescence under violet light. Furthermore, the proliferation dynamic of HIRRV in the spleen of flounder were comparatively detected by LF- and fluorescence-based RPA-CRISPR/Cas12a assay in comparison to qRT-PCR at the early infection stage, and the results showed that the viral positive signal could be firstly detected by the two RPA-CRISPR/Cas12a based methods at 6 hpi, and then by qRT-PCR at 12 hpi. Overall, our results demonstrated that the developed RPA-CRISPR/Cas12a method is a stable, specific, sensitive and more suitable in the field, which has a significant effect on the prevention of HIRRV. RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for visual and on-site detection of HIRRV, which shows a great application promise for the prevention of HIRRV infections.

8.
Anal Biochem ; 688: 115480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38331373

RESUMEN

Isothermal nucleic acid amplification methods have many advantages for use at the point of care. However, there is a lack of multiplexed isothermal amplification tests to detect multiple targets in a single reaction, which would be valuable for many diseases, such as infection with high-risk human papillomavirus (hrHPV). In this study, we developed a multiplexed loop-mediated isothermal amplification (LAMP) reaction to detect the three most common hrHPV types that cause cervical cancer (HPV16, HPV18, and HPV45) and a cellular control for sample adequacy. First, we characterized the assay limit of detection (LOD) in a real-time reaction with fluorescence readout; after 30 min of amplification the LOD was 100, 10, and 10 copies/reaction of HPV16, HPV18, and HPV45, respectively, and 0.1 ng/reaction of human genomic DNA (gDNA). Next, we implemented the assay on lateral flow strips, and the LOD was maintained for HPV16 and HPV18, but increased to 100 copies/reaction for HPV45 and to 1 ng/reaction for gDNA. Lastly, we used the LAMP test to evaluate total nucleic acid extracted from 38 clinical samples; compared to qPCR, the LAMP test had 89% sensitivity and 95% specificity. When integrated with sample preparation, this multiplexed LAMP assay could be useful for point-of-care testing.


Asunto(s)
Papillomavirus Humano 18 , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Virus del Papiloma Humano , Sensibilidad y Especificidad , Infecciones por Papillomavirus/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Papillomavirus Humano 16/genética , Papillomaviridae/genética , ADN Viral/genética
9.
Arch Microbiol ; 206(5): 206, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575737

RESUMEN

Silkworms are an essential economic insect but are susceptible to diseases during rearing, leading to yearly losses in cocoon production. While chemical control is currently the primary method to reduce disease incidences, its frequent use can result in loss of susceptibility to pathogens and, ultimately, antibiotic resistance. To effectively prevent or control disease, growers must accurately, sensitively, and quickly detect causal pathogens to determine the best management strategies. Accurate recognition of diseased silkworms can prevent pathogen transmission and reduce cocoon loss. Different pathogen detection methods have been developed to achieve this objective, but they need more precision, specificity, consistency, and promptness and are generally unsuitable for in-situ analysis. Therefore, detecting silkworm diseases under rearing conditions is still an unsolved problem. As a consequence of this, there is an enormous interest in the development of biosensing systems for the early and precise identification of pathogens. There is also significant room for improvement in translating novel biosensor techniques to identify silkworm pathogens. This study explores the types of silkworm diseases, their symptoms, and their causal microorganisms. Moreover, we compare the traditional approaches used in silkworm disease diagnostics along with the latest sensing technologies, with a precise emphasis on lateral flow assay-based biosensors that can detect and manage silkworm pathogens.


Asunto(s)
Técnicas Biosensibles , Bombyx , Animales , Técnicas Biosensibles/métodos , Insectos , Manejo de la Enfermedad
10.
Eur J Clin Microbiol Infect Dis ; 43(2): 249-257, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030860

RESUMEN

PURPOSE: The objective of this multicenter study was to compare the diagnostic performance of lateral flow assay (LFA) and enzyme-linked immunosorbent assay (ELISA) to detect the Dynamiker Aspergillus Galactomannan levels in serum and bronchoalveolar lavage fluid (BALF) samples for I. METHODS: We registered 310 clinically suspected Aspergillus infection patients from December 2021 to February 2023 and classified them into subgroups as the "IA group" and "non-IA group" based on the latest EORTC/MSG guidelines. The immunoassays were analyzed by LFA and ELISA respectively. RESULTS: Galactomannan was examined using LFA, and serum and BALF samples demonstrated sensitivities of 82.57% and 89.47%, specificities of 90.76% and 92.00%, PPVs of 89.11% and 96.23%, and NPVs of 85.04% and 79.31%, respectively. Galactomannan was observed using two assays in serum and BALF samples and showed PPAs of 95.11% and 93.33%, NPAs of 89.19% and 96.30%, and TPAs of 92.47% and 94.25%, respectively. The ROC curve demonstrated that LFA had optimum diagnostic value when the index value (I value) = 0.5, the sensitivity was 84.94%, and the specificity was 90.97%. CONCLUSION: Compared to the ELISA method, the LFA has shown excellent performance for the diagnosis of IA in serum and BALF sample and can be used as an assay for the early diagnosis of patients with IA. The dynamic change in galactomannan levels may be useful for assessing treatment response.


Asunto(s)
Aspergilosis , Galactosa/análogos & derivados , Infecciones Fúngicas Invasoras , Humanos , Sensibilidad y Especificidad , Aspergilosis/diagnóstico , Aspergillus , Mananos/análisis , Líquido del Lavado Bronquioalveolar/microbiología
11.
Med Mycol ; 62(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237463

RESUMEN

Several false positive low serum cryptococcal antigen (SCrAg) reports by lateral flow assay (LFA) were identified in late 2016 at our tertiary care hospital. After the recall and correction of the problem in the reagent, we studied the significance of SCrAg LFA ≤ 1:10 from January 2017 to October 2023. Of 20 patients with 31 samples of SCrAg LFA ≤ 1:10, 14 patients (70%) were classified as true positives, four (20%) were indeterminate, and only two (10%) patients were false positives. If a new SCrAg LFA ≤ 1:10 is detected, it should be repeated, and additional workup should be pursued.


We studied the significance of low serum cryptococcal antigen (SCrAg) titer lateral flow assay (LFA) ≤ 1:10 from January 2017 to October 2023. Of 20 patients with SCrAg LFA ≤ 1:10, only two patients (10%) were false positives. If a new SCrAg ≤ 1:10 is detected, it should be repeated, and additional workup should be done.


Asunto(s)
Antígenos Fúngicos , Criptococosis , Cryptococcus , Centros de Atención Terciaria , Humanos , Antígenos Fúngicos/sangre , Antígenos Fúngicos/inmunología , Criptococosis/diagnóstico , Criptococosis/sangre , Masculino , Femenino , Cryptococcus/inmunología , Persona de Mediana Edad , Reacciones Falso Positivas , Adulto , Anciano , Estudios Retrospectivos
12.
Med Mycol ; 62(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702848

RESUMEN

Antigen testing is an important diagnostic tool for histoplasmosis but has limited availability globally. We evaluated the OIDx urine lateral flow antigen assay among 204 persons suspected to have histoplasmosis. Among patients with proven histoplasmosis, sensitivity was 33.3% (3/9, 95% CI 7.5%-70.1%) and specificity 80.5% (157/195, 95% CI 74.3%-85.8%). The MiraVista urine antigen test had better specificity (96.9%) and equal sensitivity. The OIDx test demonstrated 33.3% (3/9) positive agreement and 84.0% (163/194) negative agreement with the MiraVista test. These results should be considered in the context of our low HIV prevalence population with a mixture of pulmonary and disseminated disease.


We evaluated a new lateral flow antigen test for the diagnosis of histoplasmosis. Proven/probable cases were mostly pulmonary disease making antigen tests likely to be less sensitive in this population. The test had similar sensitivity to the established antigen test but was less specific.


Asunto(s)
Antígenos Fúngicos , Histoplasma , Histoplasmosis , Sensibilidad y Especificidad , Histoplasmosis/diagnóstico , Histoplasmosis/orina , Humanos , Antígenos Fúngicos/orina , Histoplasma/aislamiento & purificación , Masculino , Femenino , Adulto , Persona de Mediana Edad , Inmunoensayo/métodos
13.
Anal Bioanal Chem ; 416(18): 4101-4109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744719

RESUMEN

Reproductive management significantly impacts dairy farm productivity, necessitating accurate timely pregnancy detection in cattle. This paper presents a novel handheld and portable fluorescence imaging system designed for quantitative assessment of pregnancy-specific biomarkers, addressing the limitations of current detection methods. The objective was to develop a cost-effective, at-farm solution for detecting pregnancy-specific protein B (PSPB) in bovine plasma samples. The system integrates an imaging module and a custom software application, enabling image capture, data processing, and PSPB concentration determination. Calibration utilizing known PSPB concentrations achieved a 0.6 ng/mL limit of detection. Validation encompassed a comparison with a standard ELISA method using 100 bovine plasma samples; minimal bias and good agreement were observed within the linear range of the calibration curve for both methods. The system offers portability, user-friendliness, and potential for multiplex detection, promising real-time, at-farm reproductive management. This study demonstrates the successful development and validation of a portable fluorescence imaging system, offering an efficient and accurate approach to detecting pregnancy-specific biomarkers in cattle. Its implications extend to improving dairy farm productivity by enabling timely and reliable reproductive management practices.


Asunto(s)
Biomarcadores , Imagen Óptica , Animales , Bovinos , Femenino , Embarazo , Biomarcadores/sangre , Biomarcadores/análisis , Imagen Óptica/métodos , Imagen Óptica/instrumentación , Límite de Detección , Pruebas de Embarazo/métodos , Pruebas de Embarazo/veterinaria , Pruebas de Embarazo/instrumentación , Proteínas Gestacionales/sangre , Proteínas Gestacionales/análisis , Diseño de Equipo , Ensayo de Inmunoadsorción Enzimática/métodos
14.
Anal Bioanal Chem ; 416(10): 2411-2422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459191

RESUMEN

Point-of-care sensors targeting blood marker analysis must be designed to function with very small volumes since acquiring a blood sample through a simple, mostly pain-free finger prick dramatically limits the sample size and comforts the patient. Therefore, we explored the potential of converting a conventional lateral flow assay (LFA) for a significant biomarker into a self-contained and compact polymer channel-based LFA to minimize the sample volume while maintaining the analytical merits. Our primary objective was to eliminate the use of sample-absorbing fleece and membrane materials commonly present in LFAs. Simultaneously, we concentrated on developing a ready-to-deploy one-step LFA format, characterized by dried reagents, facilitating automation and precise sample transport through a pump control system. We targeted the detection of the heart failure biomarker NT-proBNP in only 15 µL human whole blood and therefore implemented strategies that ensure highly sensitive detection. The biosensor combines streptavidin-functionalized magnetic beads (MNPs) as a 3D detection zone and fluorescence nanoparticles as signal labels in a sandwich-based immunoassay. Compared to the currently commercialized LFA, our biosensor demonstrates comparable analytical performance with only a tenth of the sample volume. With a detection limit of 43.1 pg∙mL-1 and a mean error of 18% (n ≥ 3), the biosensor offers high sensitivity and accuracy. The integration of all-dried long-term stable reagents further enhances the convenience and stability of the biosensor. This lateral flow channel platform represents a promising advancement in point-of-care diagnostics for heart failure biomarkers, offering a user-friendly and sensitive platform for rapid and reliable testing with low finger-prick blood sample volumes.


Asunto(s)
Insuficiencia Cardíaca , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Humanos , Límite de Detección , Inmunoensayo , Insuficiencia Cardíaca/diagnóstico , Biomarcadores/análisis , Fenómenos Magnéticos
15.
Anal Bioanal Chem ; 416(13): 3251-3260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38584178

RESUMEN

Multiplexed lateral flow assays (LFAs) offer efficient on-site testing by simultaneously detecting multiple biomarkers from a single sample, reducing costs. In cancer diagnostics, where biomarkers can lack specificity, multiparameter detection provides more information at the point-of-care. Our research focuses on epithelial ovarian cancer (EOC), where STn-glycosylated forms of CA125 and CA15-3 antigens can better discriminate cancer from benign conditions. We have developed a dual-label LFA that detects both CA125-STn and CA15-3-STn within a single anti-STn antibody test line. This utilizes spectral separation of green (540 nm) and blue (450 nm) emitting erbium (NaYF4:Yb3+, Er3+)- and thulium (NaYF4: Yb3+, Tm3+)-doped upconverting nanoparticle (UCNP) reporters conjugated with antibodies against the protein epitopes in CA125 or CA15-3. This technology allows the simultaneous detection of different antigen variants from a single test line. The developed proof-of-concept dual-label LFA was able to distinguish between the ascites fluid samples from diagnosed ovarian cancer patients (n = 10) and liver cirrhosis ascites fluid samples (n = 3) used as a negative control. The analytical sensitivity of CA125-STn for the dual-label LFA was 1.8 U/ml in buffer and 3.6 U/ml in ascites fluid matrix. Here we demonstrate a novel approach of spectrally separated measurement of STn-glycosylated forms of two different cancer-associated protein biomarkers by using UCNP reporter technology.


Asunto(s)
Antígeno Ca-125 , Proteínas de la Membrana , Mucina-1 , Neoplasias Ováricas , Humanos , Antígeno Ca-125/análisis , Femenino , Neoplasias Ováricas/diagnóstico , Glicosilación , Biomarcadores de Tumor/análisis , Antígenos de Carbohidratos Asociados a Tumores/análisis , Mediciones Luminiscentes/métodos , Carcinoma Epitelial de Ovario/diagnóstico , Inmunoensayo/métodos
16.
Anal Bioanal Chem ; 416(13): 3107-3115, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589616

RESUMEN

Through enabling whole blood detection in point-of-care testing (POCT), sedimentation-based plasma separation promises to enhance the functionality and extend the application range of lateral flow assays (LFAs). To streamline the entire process from the introduction of the blood sample to the generation of quantitative immune-fluorescence results, we combined a simple plasma separation technique, an immunoreaction, and a micropump-driven external suction control system in a polymer channel-based LFA. Our primary objective was to eliminate the reliance on sample-absorbing separation membranes, the use of active separation forces commonly found in POCT, and ultimately allowing finger prick testing. Combining the principle of agglutination of red blood cells with an on-device sedimentation-based separation, our device allows for the efficient and fast separation of plasma from a 25-µL blood volume within a mere 10 min and overcomes limitations such as clogging, analyte adsorption, and blood pre-dilution. To simplify this process, we stored the agglutination agent in a dried state on the test and incorporated a filter trench to initiate sedimentation-based separation. The separated plasma was then moved to the integrated mixing area, initiating the immunoreaction by rehydration of probe-specific fluorophore-conjugated antibodies. The biotinylated immune complex was subsequently trapped in the streptavidin-rich detection zone and quantitatively analyzed using a fluorescence microscope. Normalized to the centrifugation-based separation, our device demonstrated high separation efficiency of 96% and a yield of 7.23 µL (= 72%). Furthermore, we elaborate on its user-friendly nature and demonstrate its proof-of-concept through an all-dried ready-to-go NT-proBNP lateral flow immunoassay with clinical blood samples.


Asunto(s)
Péptido Natriurético Encefálico , Fragmentos de Péptidos , Humanos , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/aislamiento & purificación , Fragmentos de Péptidos/sangre , Pruebas en el Punto de Atención , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Diseño de Equipo
17.
Mycoses ; 67(2): e13700, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38369615

RESUMEN

BACKGROUND: Aspergillus fumigatus-specific IgG estimation is crucial for diagnosing allergic bronchopulmonary aspergillosis (ABPA). A point-of-care LDBio immunochromatographic lateral flow assay (LFA) had 0%-90% sensitivity to detect IgG/IgM antibodies against A. fumigatus. OBJECTIVE: To assess the accuracy of LDBio-LFA in diagnosing ABPA, using the modified ISHAM-ABPA working group criteria as the reference standard. The secondary objective was to compare the diagnostic performance between LDBio-LFA and A. fumigatus-specific IgG (cut-offs, 27 and 40 mgA/L), using a multidisciplinary team (blinded to A. fumigatus-IgG and LDBio-LFA results) diagnosis of ABPA as the reference standard. METHODS: We prospectively enrolled adult subjects with asthma and ABPA. We performed the LDBio-LFA per the manufacturer's recommendations. We used the commercially available automated fluorescent enzyme immunoassay for measuring serum A. fumigatus-specific IgG. We used the same serum sample to perform both index tests. The tests were performed by technicians blinded to the results of other tests and clinical diagnoses. RESULTS: We included 123 asthmatic and 166 ABPA subjects, with a mean ± SD age of 37.4 ± 14.4 years. Bronchiectasis and high-attenuation mucus were seen in 93.6% (146/156) and 24.3% (38/156) of the ABPA subjects. The sensitivity and specificity of LDBio-LFA in diagnosing ABPA were 84.9% and 82.9%, respectively. The sensitivity of serum A. fumigatus-specific IgG ≥27 mgA/L was 13% better than LDBio-LFA, with no difference in specificity. There was no significant difference in sensitivity and specificity between LDBio-LFA and serum A. fumigatus-IgG ≥40 mgA/L. CONCLUSION: LDBio-LFA is a valuable test for diagnosing ABPA. However, a negative test should be confirmed using an enzyme immunoassay.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Asma , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Aspergillus fumigatus , Inmunoglobulina E , Anticuerpos Antifúngicos , Aspergillus , Asma/complicaciones , Asma/diagnóstico , Inmunoglobulina G
18.
BMC Pulm Med ; 24(1): 441, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251951

RESUMEN

BACKGROUND: To explore the associations of computed tomography (CT) image features with the serum cryptococcal antigen (CrAg) titers measured by the lateral flow assay (LFA) in localized pulmonary cryptococcosis patients. METHODS: A retrospective analysis of patients with pathologically confirmed pulmonary cryptococcosis admitted to the First Affiliated Hospital of Xiamen University from January 2016 to December 2022 was performed. Clinical data, CT results, serum CrAg-LFA test results, and follow-up data were collected and analyzed. RESULTS: A total of 107 patients with localized pulmonary cryptococcosis were included, of which 31 had a single lesion in chest CT and the other 76 had multiple lesions. The positivity rate was (94.74% vs 64.52%) and titers of serum CrAg-LFA (1.77 ± 0.87 vs 0.91 ± 0.98) in the multiple lesion group were higher than those in the single lesion group, respectively. Multivariate linear regression analysis showed that the serum CrAg titers were positively associated with the number of lesions (ß, 0.08; 95% CI, 0.05 to 0.12) and the lesion size (ß, 0.40; 95% CI, 0.31 to 0.50) after adjusting other covariates. The serum CrAg-LFA titers of 60 pulmonary cryptococcosis patients showed a decreasing trend with the reduction in pulmonary lesion size after effective therapy. CONCLUSION: In pulmonary cryptococcosis patients, the number and size of lung lesions are positively correlated with the titers of the serum CrAg-LFA test. The CrAg-LFA test could be a useful tool for the diagnosis, severity assessment, and therapeutic monitoring of localized pulmonary cryptococcosis patients.


Asunto(s)
Antígenos Fúngicos , Criptococosis , Enfermedades Pulmonares Fúngicas , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Antígenos Fúngicos/sangre , Criptococosis/diagnóstico por imagen , Criptococosis/sangre , Enfermedades Pulmonares Fúngicas/diagnóstico por imagen , Enfermedades Pulmonares Fúngicas/sangre , Enfermedades Pulmonares Fúngicas/inmunología , Adulto , Anciano , Pulmón/diagnóstico por imagen , Pulmón/patología
19.
Biotechnol Lett ; 46(4): 583-592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806936

RESUMEN

Salmonella typhimurium, a pathogenic bacterium with significant implications in medicine and the food industry, poses a substantial threat by causing foodborne illnesses such as typhoid fever. Accurate diagnosis of S. typhimurium is challenging due to its overlap symptoms with various diseases. This underscores the need for a precise and efficient diagnostic approach. In this study, we developed a biosensor using the Taguchi optimization method based on aptamer lateral flow assay (LFA) for the detection of S. typhimurium. Therefore, signal probe and nanobioprobe were designed using anti-Salmonella aptamer, conjugated with gold nanoparticles (GNPs), and used in LFA. The strategy of this test is based on a competitive format between the bacteria immobilized on the membrane and the bacteria present in the tested sample. Moreovere, the optimization of various factors affecting the aptamer LFA, including the concentration of bacteria (immobilized and into the sample) and the concentration of nanobioprop, were performed using the Taguchi test designing method. The data showed that the optimal conditions for the LFA reaction was 108 CFU/mL of immobilized bacteria and 1.5 µg/µL of nanobioprop concentration. Then, the visual detection limit of S. typhimurium was estimated as 105 CFU/mL. The reaction results were obtained within 20 min, and there were no significant cross-reactions with other food pathogens. In conclusion, the aptamer-LFA diagnostic method, optimized using the Taguchi approach, emerges as a reliable, straightforward, and accurate tool for the detection of S. typhimurium. Overall, this method can be a portable diagnostic kit for the detection and identification of bacteria.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Oro , Nanopartículas del Metal , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Oro/química , Límite de Detección
20.
Mikrochim Acta ; 191(4): 177, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441684

RESUMEN

There is an urgent need for a point-of-care testing (POCT) method in developing and underserved regions to distinguish between two Monkeypox virus (MPXV) clades, given their varying transmissibility and clinical manifestations. In this paper, we target the specific complement protein gene fragment of two MPXV clades and construct a high-performance upconversion nanoparticles-based lateral flow assay (UCNPs-based LFA) with double T-lines and a shared C-line. This enables qualitative and quantitative dual-mode detection when combined with a smartphone and a benchtop fluorescence analyzer. The developed LFA exhibits stable performance, convenient operation, rapid readout (within 8 min), and a much lower limit of detection (LOD) (~ pM level) compared to existing POCT methods. The proposed detection platform demonstrates significant potential for pathogen diagnosis using a POCT approach.


Asunto(s)
Nanopartículas , Sistemas de Atención de Punto , Monkeypox virus , Pruebas en el Punto de Atención , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA