Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364300

RESUMEN

The recovery of industrial by-products is part of the zero-waste circular economy. Lentil seed coats are generally considered to be a waste by-product. However, this low-value by-product is rich in bioactive compounds and may be considered an eco-friendly source of health-promoting phytochemicals. For the first time, a sustainable microwave-assisted extraction technique was applied, and a solvent screening was carried out to enhance the bioactive compound content and the antioxidant activity of green and red lentil hull extracts. With respect to green lentil hull extracts that were obtained with different solvents, the aqueous extract of the red lentil seed coats showed the highest total phenolic and total flavonoid content (TPC = 28.3 ± 0.1 mg GAE/g dry weight, TFC = 1.89 ± 0.01 mg CE/100 mg dry weight, respectively), as well as the highest antioxidant activity, both in terms of the free radical scavenging activity (ABTS, 39.06 ± 0.73 mg TE/g dry weight; DPPH, IC50 = 0.39 µg/mL) and the protection of the neuroblastoma cell line (SH-SY5Y, IC50 = 10.1 ± 0.6 µg/mL), the latter of which has never been investigated so far. Furthermore, a metabolite discovery analysis was for the first time performed on the aqueous extracts of both cultivars using an HPLC separation which was coupled with an Orbitrap-based high-Resolution Mass Spectrometry technique.


Asunto(s)
Lens (Planta) , Neuroblastoma , Humanos , Antioxidantes/química , Microondas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solventes/química
2.
Food Res Int ; 167: 112634, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087206

RESUMEN

Polyphenol-rich lentil hulls are a valuable by-product. In this study, lentil hulls were subjected to simulated in vitro digestion and caco-2 cell monolayer models to assess the bioaccessibility, transmembrane transport, and a rat model to examine the bioavailability and metabolism in vivo. Polyphenols were increasingly released during the in vitro digestion, and were found to contribute to the increased antioxidant activity. Among the bioaccessible polyphenols, catechin glucoside, kaempferol tetraglucoside, procyanidin dimer and dihydroxybenzoic acid-O-dipentoside were most efficiently transported across the caco-2 membrane, and responsible for promoting intestinal integrity as a result of enhanced expression of tight junction proteins. When ingested by rats, lentil hull polyphenols underwent extensive I and II phase metabolic reactions in vivo, including hydroxylation, methylation, glucuronidation and sulfation. Overall, results of this study showed that lentil hull polyphenols are bioaccessible and bioavailable, and lentil hulls as a by-product can be a valuable ingredient for future functional foods.


Asunto(s)
Lens (Planta) , Polifenoles , Humanos , Animales , Ratas , Polifenoles/metabolismo , Disponibilidad Biológica , Células CACO-2 , Digestión
3.
J Agric Food Chem ; 70(41): 13251-13263, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36196880

RESUMEN

Polyphenol-rich Laird lentil hulls are a byproduct of lentil processing. In the present study, free and bound polyphenols in lentil hulls were analyzed with UHPLC-LTQ-OrbiTrap-MS2, and the anti-inflammatory mechanism of their digestive products was explored based on the NF-κB and Keap1-Nrf2 signaling pathways in the HT-29 cell model. In summary, a total of 27 polyphenols and 5 nonphenolic constituents were identified in free and bound fractions, and among them, catechin glucoside, kaempferol tetraglucoside, procyanidin dimer, and dihydroxybenzoic acid-O-dipentoside were the main polyphenols in the digestive products. These digestive products could reduce inflammatory mediators and exert anti-inflammatory activity by inhibiting NF-κB and activating Keap1-Nrf2 signaling pathways, and there was crosstalk between them, which was a mutual inhibition effect. The results show that polyphenols in lentil hulls are a good source of anti-inflammatory ingredients and have a promising development potential.


Asunto(s)
Catequina , Lens (Planta) , Proantocianidinas , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Lens (Planta)/metabolismo , Células HT29 , Catequina/farmacología , Proantocianidinas/metabolismo , Quempferoles/farmacología , Polifenoles/farmacología , Transducción de Señal , Antiinflamatorios/farmacología , Fenoles/farmacología , Mediadores de Inflamación , Glucósidos/farmacología
4.
Food Chem ; 325: 126925, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32387929

RESUMEN

A systemic approach was taken in profiling the hydrophilic and lipophilic antioxidants in lentil hulls using a combination of HPLC, LC-ESI-MS2 and GC techniques. A total of 37 phenolics were tentatively identified in the hydrophilic fractions, while four carotenoids and three tocopherols were found in the lipophilic fraction. Results showed that in addition to the high free extractable phenolics, phenolic compounds in conjugated and bound forms also exist in similar amounts. Information on conjugated and bound phenolics are particularly important as these forms of phenolics often go unnoticed by chromatographic profiling of extractables. All phenolic, carotenoid and tocopherol fractions contributed to antioxidant activities. Information about bioactives from lentil hulls, specifically conjugated and bound phenolics are reported here for the first time. The comprehensive profiling of these bioactives lays a good foundation for further assessment of the value-added uses of lentil hulls which are by-products of pulse processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA