Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.887
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2311077121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470923

RESUMEN

The memory benefit that arises from distributing learning over time rather than in consecutive sessions is one of the most robust effects in cognitive psychology. While prior work has mainly focused on repeated exposures to the same information, in the real world, mnemonic content is dynamic, with some pieces of information staying stable while others vary. Thus, open questions remain about the efficacy of the spacing effect in the face of variability in the mnemonic content. Here, in two experiments, we investigated the contributions of mnemonic variability and the timescale of spacing intervals, ranging from seconds to days, to long-term memory. For item memory, both mnemonic variability and spacing intervals were beneficial for memory; however, mnemonic variability was greater at shorter spacing intervals. In contrast, for associative memory, repetition rather than mnemonic variability was beneficial for memory, and spacing benefits only emerged in the absence of mnemonic variability. These results highlight a critical role for mnemonic variability and the timescale of spacing intervals in the spacing effect, bringing this classic memory paradigm into more ecologically valid contexts.


Asunto(s)
Memoria , Recuerdo Mental , Aprendizaje , Memoria a Largo Plazo , Tiempo
2.
Proc Natl Acad Sci U S A ; 121(7): e2311709121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324573

RESUMEN

Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Plasticidad Neuronal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(21): e2400232121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748585

RESUMEN

The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.

4.
Proc Natl Acad Sci U S A ; 121(14): e2321612121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530890

RESUMEN

To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Endospermo/genética , Germinación/fisiología , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Regulación de la Expresión Génica de las Plantas
5.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

6.
Proc Natl Acad Sci U S A ; 121(5): e2317762121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261616

RESUMEN

Intravenous immunoglobulin (IVIg), a preparation of polyclonal serum IgG pooled from numerous blood donors, has been used for nearly three decades and is proving to be an efficient treatment for many autoimmune blistering diseases, including pemphigus vulgaris (PV). Despite its widespread use and therapeutic success, its mechanisms of action are not completely understood. Some of its anti-inflammatory and immunomodulatory actions have been studied. In this study, the authors present a twenty-year follow-up of 21 patients with clinical and immunopathological confirmed PV, treated with IVIg as monotherapy, according to an established published protocol. IVIg therapy produced long-term sustained, clinical, serological, and immunopathological remission. For 20 y, these patients received no drugs and experienced no disease. This observation suggests that there was the establishment of immune balance or restoration of immune regulation in these PV patients. Twelve (57%) patients experienced no relapse during follow-up. Six (29%) patients experienced a relapse due to acute stress or post-coronavirus infection and/or vaccination. Reinstitution of IVIg resulted in prompt sustained recovery. Three (14.2%) patients, in clinical and serological remission, died due to unrelated causes. No severe adverse effects from IVIg were documented in all 21 patients. The simultaneous or sequential anti-inflammatory and immunomodulatory effects of IVIg may have influenced the long-term clinical remission observed. This study provides a human prototype to examine the pathophysiology of autoimmunity and a model to study immune regulation and mechanisms that can facilitate restoring immune tolerance.


Asunto(s)
Enfermedades Autoinmunes , Pénfigo , Humanos , Inmunoglobulinas Intravenosas , Tolerancia Inmunológica , Antiinflamatorios
7.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141354

RESUMEN

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Asunto(s)
Plasticidad Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Humanos , Plasticidad Neuronal/genética , Simulación por Computador , Potenciación a Largo Plazo/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/genética , Electroencefalografía , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Modelos Neurológicos , Depresión Sináptica a Largo Plazo/genética , Masculino , Potenciales Evocados Visuales/fisiología
8.
Proc Natl Acad Sci U S A ; 121(8): e2317796121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346201

RESUMEN

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.

9.
Proc Natl Acad Sci U S A ; 121(16): e2320883121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598342

RESUMEN

Differentiation of pancreatic endocrine cells from human pluripotent stem cells (PSCs) has been thoroughly investigated for application in cell therapy against diabetes. In the context of induced pancreatic endocrine cell implantation, previous studies have reported graft enlargement resulting from off-target pancreatic lineage cells. However, there is currently no documented evidence of proliferative off-target cells beyond the pancreatic lineage in existing studies. Here, we show that the implantation of seven-stage induced PSC-derived pancreatic islet cells (s7-iPICs) leads to the emergence of unexpected off-target cells with proliferative capacity via in vivo maturation. These cells display characteristics of both mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs), termed proliferative MSC- and SMC-like cells (PMSCs). The frequency of PMSC emergence was found to be high when 108 s7-iPICs were used. Given that clinical applications involve the use of a greater number of induced cells than 108, it is challenging to ensure the safety of clinical applications unless PMSCs are adequately addressed. Accordingly, we developed a detection system and removal methods for PMSCs. To detect PMSCs without implantation, we implemented a 4-wk-extended culture system and demonstrated that putative PMSCs could be reduced by compound treatment, particularly with the taxane docetaxel. When docetaxel-treated s7-iPICs were implanted, the PMSCs were no longer observed. This study provides useful insights into the identification and resolution of safety issues, which are particularly important in the field of cell-based medicine using PSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Islotes Pancreáticos , Humanos , Docetaxel , Diferenciación Celular , Implantación del Embrión
10.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
11.
Bioessays ; 46(7): e2400006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693811

RESUMEN

Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Sinapsis , Receptores AMPA/metabolismo , Animales , Humanos , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología
12.
Proc Natl Acad Sci U S A ; 120(52): e2304903120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109542

RESUMEN

Recognition and memory of familiar conspecifics provides the foundation for complex sociality and is vital to navigating an unpredictable social world [Tibbetts and Dale, Trends Ecol. Evol. 22, 529-537 (2007)]. Human social memory incorporates content about interactions and relationships and can last for decades [Sherry and Schacter, Psychol. Rev. 94, 439-454 (1987)]. Long-term social memory likely played a key role throughout human evolution, as our ancestors increasingly built relationships that operated across distant space and time [Malone et al., Int. J. Primatol. 33, 1251-1277 (2012)]. Although individual recognition is widespread among animals and sometimes lasts for years, little is known about social memory in nonhuman apes and the shared evolutionary foundations of human social memory. In a preferential-looking eye-tracking task, we presented chimpanzees and bonobos (N = 26) with side-by-side images of a previous groupmate and a conspecific stranger of the same sex. Apes' attention was biased toward former groupmates, indicating long-term memory for past social partners. The strength of biases toward former groupmates was not impacted by the duration apart, and our results suggest that recognition may persist for at least 26 y beyond separation. We also found significant but weak evidence that, like humans, apes may remember the quality or content of these past relationships: apes' looking biases were stronger for individuals with whom they had more positive histories of social interaction. Long-lasting social memory likely provided key foundations for the evolution of human culture and sociality as they extended across time, space, and group boundaries.


Asunto(s)
Hominidae , Pan troglodytes , Animales , Humanos , Pan paniscus , Conducta Social , Reconocimiento en Psicología
13.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38806250

RESUMEN

Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.


Asunto(s)
Hipocampo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Núcleo Accumbens , Receptores de N-Metil-D-Aspartato , Caracteres Sexuales , Sinapsis , Animales , Masculino , Núcleo Accumbens/fisiología , Potenciación a Largo Plazo/fisiología , Femenino , Ratones , Sinapsis/fisiología , Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Neuronas/fisiología , Neuronas Espinosas Medianas
14.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38326038

RESUMEN

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Asunto(s)
Giro Dentado , Potenciación a Largo Plazo , Masculino , Ratones , Animales , Potenciación a Largo Plazo/fisiología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Estimulación Eléctrica/métodos
15.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316559

RESUMEN

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Corteza Visual , Masculino , Femenino , Ratones , Animales , Tálamo/fisiología , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Sinapsis
16.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38942470

RESUMEN

NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.


Asunto(s)
Hipocampo , Receptores de N-Metil-D-Aspartato , Serina , Transducción de Señal , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Masculino , Femenino , Serina/metabolismo , Serina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Ácido Glutámico/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
17.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38942471

RESUMEN

The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.


Asunto(s)
Haploinsuficiencia , Proteínas de la Membrana , Ratones Noqueados , Plasticidad Neuronal , Receptores de GABA-A , Transmisión Sináptica , Animales , Ratones , Masculino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transmisión Sináptica/fisiología , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/genética , Hipocampo/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Miedo/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Memoria/fisiología , Inhibición Neural/fisiología
18.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354781

RESUMEN

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Asunto(s)
ADN Mitocondrial , Hipocampo , Depresión Sináptica a Largo Plazo , Receptor Toll-Like 9 , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Hipocampo/metabolismo , Inmunidad Innata , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
19.
Hum Genomics ; 18(1): 84, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075538

RESUMEN

BACKGROUND: Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS: In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS: By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS: This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Metilmalonil-CoA Mutasa , Tamizaje Neonatal , Vitamina B 12 , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/patología , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Recién Nacido , Metilmalonil-CoA Mutasa/genética , China/epidemiología , Masculino , Femenino , Vitamina B 12/sangre , Vitamina B 12/genética , Lactante , Estudios Retrospectivos , Mutación/genética , Pronóstico , Resultado del Tratamiento , Preescolar
20.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937077

RESUMEN

Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Consolidación de la Memoria , Memoria Episódica , Recuerdo Mental , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Recuerdo Mental/fisiología , Anciano , Consolidación de la Memoria/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA