Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475739

RESUMEN

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Asunto(s)
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudio de Asociación del Genoma Completo , Arabidopsis/genética , Fitomejoramiento , Fabaceae/genética , Glycine max , Genómica
2.
BMC Genomics ; 25(1): 338, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575927

RESUMEN

BACKGROUND: Due to rising costs, water shortages, and labour shortages, farmers across the globe now prefer a direct seeding approach. However, submergence stress remains a major bottleneck limiting the success of this approach in rice cultivation. The merger of accumulated rice genetic resources provides an opportunity to detect key genomic loci and candidate genes that influence the flooding tolerance of rice. RESULTS: In the present study, a whole-genome meta-analysis was conducted on 120 quantitative trait loci (QTL) obtained from 16 independent QTL studies reported from 2004 to 2023. These QTL were confined to 18 meta-QTL (MQTL), and ten MQTL were successfully validated by independent genome-wide association studies from diverse natural populations. The mean confidence interval (CI) of the identified MQTL was 3.44 times narrower than the mean CI of the initial QTL. Moreover, four core MQTL loci with genetic distance less than 2 cM were obtained. By combining differentially expressed genes (DEG) from two transcriptome datasets with 858 candidate genes identified in the core MQTL regions, we found 38 common differentially expressed candidate genes (DECGs). In silico expression analysis of these DECGs led to the identification of 21 genes with high expression in embryo and coleoptile under submerged conditions. These DECGs encode proteins with known functions involved in submergence tolerance including WRKY, F-box, zinc fingers, glycosyltransferase, protein kinase, cytochrome P450, PP2C, hypoxia-responsive family, and DUF domain. By haplotype analysis, the 21 DECGs demonstrated distinct genetic differentiation and substantial genetic distance mainly between indica and japonica subspecies. Further, the MQTL7.1 was successfully validated using flanked marker S2329 on a set of genotypes with phenotypic variation. CONCLUSION: This study provides a new perspective on understanding the genetic basis of submergence tolerance in rice. The identified MQTL and novel candidate genes lay the foundation for marker-assisted breeding/engineering of flooding-tolerant cultivars conducive to direct seeding.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 24(1): 879, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358692

RESUMEN

BACKGROUND: Tomato leaf curl New Delhi virus (ToLCNDV) (family Geminiviridae, genus Begomovirus) is a significant threat to cucumber (Cucumis sativus) production in many regions. Previous studies have reported the genetic mapping of loci related to ToLCNDV resistance, but no resistance genes have been identified. RESULTS: We conducted map-based cloning of the ToLCNDV resistance gene in cucumber accession No.44. Agroinfiltration and graft-inoculation analyses confirmed the resistance of No.44 to ToLCNDV isolates from the Mediterranean and Asian countries. Initial mapping involving two rounds of phenotyping with two independent F2 populations generated by crossing the begomovirus-susceptible cultivar SHF and No.44 consistently detected major quantitative trait loci (QTLs) on chromosomes 1 and 2 that confer resistance to ToLCNDV. Fine-mapping of Cy-1, the dominant QTL on chromosome 1, using F3 populations narrowed the candidate region to a 209-kb genomic segment harboring 24 predicted genes. Among these genes, DFDGD-class RNA-dependent RNA polymerase (CsRDR3), an ortholog of Ty-1/Ty-3 of tomato and Pepy-2 of capsicum, was found to be a strong candidate conferring ToLCNDV resistance. The CsRDR3 sequence of No.44 contained multiple amino acid substitutions; the promoter region of CsRDR3 in No.44 had a large deletion; and the CsRDR3 transcript levels were greater in No.44 than in SHF. Virus-induced gene silencing (VIGS) of CsRDR3 using two chromosome segment substitution lines harboring chromosome 1 segments derived from No.44 compromised resistance to ToLCNDV. CONCLUSIONS: Forward and reverse genetic approaches identified CsRDR3, which encodes a DFDGD-class RNA-dependent RNA polymerase, as the gene responsible for ToLCNDV resistance at the major QTL Cy-1 on chromosome 1 in cucumber. Marker-assisted breeding of ToLCNDV resistance in cucumber will be expedited by using No.44 and the DNA markers developed in this study.


Asunto(s)
Begomovirus , Cucumis sativus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , ARN Polimerasa Dependiente del ARN , Cucumis sativus/genética , Cucumis sativus/virología , Cucumis sativus/enzimología , Begomovirus/fisiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Resistencia a la Enfermedad/genética , Mapeo Cromosómico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Cromosomas de las Plantas/genética
4.
BMC Plant Biol ; 24(1): 517, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851667

RESUMEN

BACKGROUND: C. Oleifera is among the world's largest four woody plants known for their edible oil production, yet the contribution rate of improved varieties is less than 20%. The species traditional breeding is lengthy cycle (20-30 years), occupation of land resources, high labor cost, and low accuracy and efficiency, which can be enhanced by molecular marker-assisted selection. However, the lack of high-quality molecular markers hinders the species genetic analysis and molecular breeding. RESULTS: Through quantitative traits characterization, genetic diversity assessment, and association studies, we generated a selection population with wide genetic diversity, and identified five excellent high-yield parental combinations associated with four reliable high-yield ISSR markers. Early selection criteria were determined based on kernel fresh weight and cultivated 1-year seedling height, aided by the identification of these 4 ISSR markers. Specific assignment of selected individuals as paternal and maternal parents was made to capitalize on their unique attributes. CONCLUSIONS: Our results indicated that molecular markers-assisted breeding can effectively shorten, enhance selection accuracy and efficiency and facilitate the development of a new breeding system for C. oleifera.


Asunto(s)
Camellia , Fitomejoramiento , Fitomejoramiento/métodos , Camellia/genética , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Variación Genética , Hibridación Genética
5.
Planta ; 260(1): 10, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796805

RESUMEN

MAIN CONCLUSION: Brown-top millet is a lesser-known millet with a high grain nutrient value, early maturation, and drought tolerance that needs basic research to understand and conserve food security. Brown-top millet [Urochloa ramosa (L.)] is currently cultivated in some developing countries (especially in India) for food and fodder, although it is less known among the small millets. Like other millets, it contains macro- and micronutrients, vitamins, minerals, proteins, and fiber, all of which have rich health benefits. The nutritional importance and health benefits of brown-top millet are still unknown to many people due to a lack of awareness, wide cultivation, and research. Hence, this millet is currently overshadowed by other major cereals. This review article aims to present the nutritional, breeding, genetic, and genomic resources of brown-top millet to inform millet and other plant researchers. It is important to note that genetic and genomic resources have not yet been created for this millet. To date, there are no genomic and transcriptomic resources for brown-top millet to develop single nucleotide polymorphisms (SNP) and insertion/Deletions (InDels) for breeding studies. Furthermore, studies regarding nutritional significance and health benefits are required to investigate the exact nutritional contents and health benefits of the brown-top millet. The present review delves into the nutritional value and health advantages of brown-top millet, as supported by the available literature. The limitations of producing brown-top millet have been enumerated. We also cover the status of marker-assisted breeding and functional genomics research on closely related species. Lastly, we draw insights for further research such as developing omics resources and applying genome editing to study and improve brown-top millet. This review will help to start breeding and other molecular studies to increase the growth and development of this cereal.


Asunto(s)
Mijos , Fitomejoramiento , Mijos/genética , Fitomejoramiento/métodos , Genómica , Productos Agrícolas/genética , Valor Nutritivo , Genoma de Planta/genética , Grano Comestible/genética
6.
Theor Appl Genet ; 137(10): 234, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325170

RESUMEN

Sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop. The recent introduction of Meloidogyne enterolobii poses a significant economic threat to North Carolina's sweetpotato industry and breeding resistance into new varieties has become a high priority for the US sweetpotato industry. Previous studies have shown that 'Tanzania', a released African landrace, is resistant to M. enterolobii. We screened the biparental sweetpotato mapping population, 'Tanzania' x 'Beauregard', for resistance to M. enterolobii by inoculating 246 full-sibs with 10,000 eggs each under greenhouse conditions. 'Tanzania', the female parent, was highly resistant, while 'Beauregard' was highly susceptible. Our bioassays exhibited strong skewing toward resistance for three measures of resistance: reproductive factor, eggs per gram of root tissue, and root gall severity ratings. A 1:1 segregation for resistance suggested a major gene conferred M. enterolobii resistance. Using a random-effect multiple interval mapping model, we identified a single major QTL, herein designated as qIbMe-4.1, on linkage group 4 that explained 70% of variation in resistance to M. enterolobii. This study provides a new understanding of the genetic basis of M. enterolobii resistance in sweetpotato and represents a major step towards the identification of selectable markers for nematode resistance breeding.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ipomoea batatas , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Tylenchoidea , Ipomoea batatas/genética , Ipomoea batatas/parasitología , Animales , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Fenotipo , Marcadores Genéticos
7.
Phytopathology ; 114(7): 1637-1645, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38451589

RESUMEN

Scald is one of the major economically important foliar diseases in barley, causing up to 40% yield loss in susceptible varieties. The identification of quantitative trait loci and elite alleles that confer resistance to scald is imperative in reducing the threats to barley production. In this study, genome-wide association studies were conducted using a panel of 697 barley genotypes to identify quantitative trait loci for scald resistance. Field experiments were conducted over three consecutive years. Among different models used for genome-wide association studies analysis, FarmCPU was shown to be the best-suited model. Nineteen significant marker-trait associations related to scald resistance were identified across six different chromosomes. Eleven of these marker-trait associations correspond to previously reported scald resistance genes Rrs1, Rrs4, and Rrs2, respectively. Eight novel marker-trait associations were identified in this study, with the candidate genes encoding a diverse class of proteins, including region leucine-rich repeats, AP2/ERF transcription factor, homeodomain-leucine zipper, and protein kinase family proteins. The combination of identified superior alleles significantly reduces disease severity scores. The results will be valuable for marker-assisted breeding for developing scald-resistant varieties.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Hordeum , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Genotipo , Marcadores Genéticos , Alelos
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445885

RESUMEN

Reeta is a popular late-maturing high-yielding rice variety recommended for cultivation in the eastern Indian states. The cultivar is highly sensitive to submergence stress. Phosphorus deficiency is an additional constraint for realizing high yield. The quantitative trait loci (QTLs), Sub1, for submergence and Pup1 for low phosphorus stress tolerance along with narrow-grained trait, GW5 were introgressed into the variety from the donor parent, Swarna-Sub1 through marker-assisted breeding. In addition, phenotypic selections for higher panicle weight, grain number, and spikelet fertility were performed in each segregating generation. Foreground selection detected the 3 target QTLs in 9, 8 and 7 progenies in the BC1F1, BC2F1, and BC3F1 generation, respectively. Recurrent parent's genome recovery was analyzed using 168 SSR polymorphic markers. The foreground analysis in 452 BC3F2 progenies showed five pyramided lines in homozygous condition for the target QTLs. No donor fragment drag was noticed in the Sub1 and GW5 QTLs carrier while a segmentwas observed in the Pup1 carrier chromosome. The developed lines were higher yielding, had submergence, and had low phosphorus stress-tolerance alongwith similar to the recipient parent in the studied morpho-quality traits. A promising pyramided line is released in the name of Reeta-Panidhan (CR Dhan 413) for the flood-prone areas of Odisha state.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Marcadores Genéticos , Fitomejoramiento , Fósforo
9.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511422

RESUMEN

Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.


Asunto(s)
Asteraceae , Cichorium intybus , Cichorium intybus/genética , Inulina , Fitomejoramiento , Mapeo Cromosómico , Asteraceae/genética
10.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108095

RESUMEN

The sweet cherry plant (Prunus avium L.) is primarily self-incompatible, with so-called S-alleles responsible for the inability of flowers to be pollinated not only by their own pollen grains but also by pollen from other cherries having the same S-alleles. This characteristic has wide-ranging impacts on commercial growing, harvesting, and breeding. However, mutations in S-alleles as well as changes in the expression of M locus-encoded glutathione-S-transferase (MGST) can lead to complete or partial self-compatibility, simplifying orchard management and reducing possible crop losses. Knowledge of S-alleles is important for growers and breeders, but current determination methods are challenging, requiring several PCR runs. Here we present a system for the identification of multiple S-alleles and MGST promoter variants in one-tube PCR, with subsequent fragment analysis on a capillary genetic analyzer. The assay was shown to unequivocally determine three MGST alleles, 14 self-incompatible S-alleles, and all three known self-compatible S-alleles (S3', S4', S5') in 55 combinations tested, and thus it is especially suitable for routine S-allele diagnostics and molecular marker-assisted breeding for self-compatible sweet cherries. In addition, we identified a previously unknown S-allele in the 'Techlovicka´ genotype (S54) and a new variant of the MGST promoter with an 8-bp deletion in the ´Kronio´ cultivar.


Asunto(s)
Prunus avium , Prunus , Prunus avium/genética , Alelos , Prunus/genética , Fitomejoramiento , Reacción en Cadena de la Polimerasa
11.
J Integr Plant Biol ; 65(3): 633-645, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36269601

RESUMEN

Whole-genome genotyping methods are important for breeding. However, it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species. In our study, we accidently discovered that in adapter ligation-mediated PCR, the amplification by primer-template mismatched annealing (PTMA) along the genome could generate thousands of stable PCR products. Based on this observation, we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing (FBI-seq) using one specific primer, in which foreground genotyping is performed by primer-template perfect annealing (PTPA), while background genotyping employs PTMA. Unlike DNA arrays, multiple PCR, or genome target enrichments, FBI-seq requires little preliminary work for primer design and synthesis, and it is easily adaptable to different foreground genes and species. FBI-seq therefore provides a prolific, robust, and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the post-genomics era.


Asunto(s)
Genoma , Genotipo , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa/métodos
12.
Physiol Mol Biol Plants ; 29(1): 121-129, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36733841

RESUMEN

Developing multiple disease resistance through naturally available host resistance alleles is a challenging as well as rewarding area of research. Availability of host resistance alleles and the reliability of their identification through diagnostic molecular markers have paved the way for stacking of these resistance alleles for developing important genetic resources in tomato. Here we report the marker assisted stacking of Ty3, Mi1.2 and Ph3 alleles, governing leaf curl, root knot and late blight disease resistance, respectively, in superior F4 segregants of tomato derived from two diverse parents (i.e., BRDT-1 and H-88-78-1). Marker assisted selection was applied only on morphologically superior segregants at F2 and F3 generations, which helped us in identifying suitable lines even from a relatively small population. The diagnostic values of the employed molecular markers advocate that the identified superior segregants, carrying all the three aforementioned resistance alleles in homozygous condition, are suitable to be explored as valuable genetic resources for developing multiple disease resistance through rapid introgression of these genes in different genetic background of tomato. Identification of suitable segregants derived from these lines should be promising for obtaining improved cultivars in near future. Nevertheless, these lines might be further explored to decipher the intrinsic details of host's resistance mechanism involving genetic interactions between different resistance factors. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01277-2.

13.
Funct Integr Genomics ; 23(1): 25, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576593

RESUMEN

Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G. hirsutum (CMS-(AD)1), G. barbadense (CMS-(AD)2), G. harknessii (CMS-D2), and G. trilobum (CMS-D8) cytoplasms were first created by multiple backcrosses with common genotype Shikang126. Then, 64 pairs of mitochondrial simple sequence repeat (mtSSR) markers were designed to explore the mitochondrial DNA diversities among four isonuclear-alloplasmic cotton male sterile lines, and a total of nine pairs of polymorphic mtSSR molecular markers were successfully developed. Polymorphism analysis indicated that mtSSR59 marker correlated to the atp1 gene could effectively divide the CMS-D2, CMS-(AD)1, and CMS-(AD)2 in one category while the CMS-D8 in another category. Further cytological observation and determination of ATP contents also confirmed the accurate classification of CMS-D2 and CMS-D8 lines. Moreover, the mtSSR59 marker was successfully applied in the marker-assisted selection (MAS) for breeding new male sterile lines and precise differentiation or purity identification of different CMS-based "three-line" and conventional cotton hybrids. This study provides new technical measures for classifying various cytoplasmic sterile lines, and our results will significantly improve the efficiency of there-line hybrid breeding in cotton.


Asunto(s)
ADN Mitocondrial , Infertilidad Vegetal , Citoplasma/genética , ADN Mitocondrial/genética , Infertilidad Vegetal/genética , Gossypium/genética
14.
Planta ; 255(2): 46, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076815

RESUMEN

MAIN CONCLUSION: Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Genoma de Planta/genética , Biología Molecular , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
15.
J Exp Bot ; 73(18): 6475-6489, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35788288

RESUMEN

Decreasing cadmium (Cd) concentrations in rice grains can effectively reduce potential risks to human health because rice is the major contributor to Cd intake in many diets. Among several genes involved in rice Cd accumulation, the loss of function of OsNRAMP5 is known to be effective in reducing grain concentration by inhibiting root uptake. However, disruption of this gene simultaneously decreases manganese (Mn) uptake because OsNRAMP5 is a major Mn transporter. With the aim of improving Mn uptake in OsNRAMP5 mutants while still restricting the grain Cd concentration below the upper limit of international standards, we identified a novel OsNRAMP5 allele encoding a protein in which glutamine (Q) at position 337 was replaced by lysine (K). The mutant carrying the OsNRAMP5-Q337K allele showed intermediate Cd and Mn accumulation between that of the wild-type and OsNRAMP5-knockout lines, and exhibited more resistance to Mn deficiency than the knockout lines. Different amino acid substitutions at position Q337 significantly affected the Cd and Mn transport activity in yeast cells, indicating that it is one of the crucial sites for OsNRAMP5 function. Our results suggest that the OsNRAMP5-Q337K allele might be useful for reducing grain Cd concentrations without causing severe Mn deficiency in rice cultivars through DNA marker-assisted breeding.


Asunto(s)
Cadmio , Oryza , Contaminantes del Suelo , Alelos , Cadmio/metabolismo , Grano Comestible/genética , Marcadores Genéticos , Glutamina , Lisina/metabolismo , Manganeso/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
16.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269548

RESUMEN

Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.


Asunto(s)
Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Mapeo Cromosómico , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Fotosíntesis , Fitomejoramiento , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806382

RESUMEN

Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.


Asunto(s)
Oryza , Estudios de Asociación Genética , Germinación/genética , Oryza/genética , Fitomejoramiento , Semillas/genética , Temperatura
18.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955817

RESUMEN

Synthetic targeted optimization of plant promoters is becoming a part of progress in mainstream postgenomic agriculture along with hybridization of cultivated plants with wild congeners, as well as marker-assisted breeding. Therefore, here, for the first time, we compiled all the experimental data-on mutational effects in plant proximal promoters on gene expression-that we could find in PubMed. Some of these datasets cast doubt on both the existence and the uniqueness of the sought solution, which could unequivocally estimate effects of proximal promoter mutation on gene expression when plants are grown under various environmental conditions during their development. This means that the inverse problem under study is ill-posed. Furthermore, we found experimental data on in vitro interchangeability of plant and human TATA-binding proteins allowing the application of Tikhonov's regularization, making this problem well-posed. Within these frameworks, we created our Web service Plant_SNP_TATA_Z-tester and then determined the limits of its applicability using those data that cast doubt on both the existence and the uniqueness of the sought solution. We confirmed that the effects (of proximal promoter mutations on gene expression) predicted by Plant_SNP_TATA_Z-tester correlate statistically significantly with all the experimental data under study. Lastly, we exemplified an application of Plant_SNP_TATA_Z-tester to agriculturally valuable mutations in plant promoters.


Asunto(s)
Genes de Plantas , Transcripción Genética , Expresión Génica , Humanos , Mutación , Regiones Promotoras Genéticas , TATA Box
19.
BMC Plant Biol ; 21(1): 357, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330216

RESUMEN

BACKGROUND: Powdery mildew (PM), one of the major diseases in wheat, severely damages yield and quality, and the most economical and effective way to address this issue is to breed disease-resistant cultivars. Accordingly, 371 landraces and 266 released cultivars in Henan Province were genotyped by a 660 K microarray and phenotyped for adult plant resistance (APR) to PM from 2017 to 2020, and these datasets were used to conduct multilocus genome-wide association studies (GWASs). RESULTS: Thirty-six varieties showed stable APR in all the environments, and eleven quantitative trait nucleotides (QTNs) were found by multiple methods across multiple environments and best linear unbiased prediction (BLUP) values to be significantly associated with APR. Among these stable QTNs, four were previously reported, three were newly discovered in this study, and the others need to be further investigated. The major and newly discovered QTN, Qpm-3BL, was located at chr03BL_AX-109,052,670, while another newly discovered QTN, Qpm-1BL, was located between chr01BL_AX-108,771,002 and chr01BL_AX-110,117,322. Five and eight landraces were identified to be resistant based on Qpm-1BL (haplotype TC) and Qpm-3BL (allele T), respectively. To validate Qpm-3BL, a new kompetitive allele-specific PCR (KASP) marker was developed to scan 155 F2 individuals, and the average resistance score supported the value of Qpm-3BL in marker-assisted breeding. Near Qpm-3BL, PmBMYD was identified by KEGG, gene expression and comparative genomics analyses to be a candidate. Its resistance mechanism may involve gene tandem repeats. CONCLUSIONS: This study reveals a previously unknown gene for PM resistance that is available for marker-assisted breeding.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Triticum/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Sitios de Carácter Cuantitativo
20.
Planta ; 254(5): 90, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609619

RESUMEN

MAIN CONCLUSION: Identification of molecular markers and characterization of nutrient transporters could help to improve the tolerance under abiotic and low nutrient stresses in sorghum ensuring higher yield to conserve food security Sorghum is an important cereal crop delivering food and energy security in the semi-arid tropics of the world. Adverse climatic conditions induced by global warming and low input agriculture system in developing countries demand for the improvement of sorghum to tolerate various abiotic stresses. In this review, we discuss the application of marker-assisted breeding and nutrient transporter characterization studies targeted towards improving the tolerance of sorghum under drought, salinity, cold, low phosphate and nitrogen stresses. Family members of some nutrient transporters such as nitrate transporter (NRT), phosphate transporter (PHT) and sulphate transporter (SULTR) were identified and characterized for improving the low nutrient stress tolerance in sorghum. Several quantitative trait loci (QTL) were identified for drought, salinity and cold stresses with an intention to enhance the tolerance of sorghum under these stresses. A very few QTL and nutrient transporters have been identified and validated under low nitrogen and phosphorus stresses compared to those under drought, salinity and cold stresses. Marker-assisted breeding and nutrient transporter characterization have not yet been attempted in sorghum under other macro- and micro-nutrient stresses. We hope this review will raise awareness among plant breeders, scientists and biotechnologists about the importance of sorghum and need to conduct the studies on marker-assisted breeding and nutrient transporter under low nutrient stresses to improve the sorghum production.


Asunto(s)
Sorghum , Grano Comestible , Nutrientes , Fitomejoramiento , Sorghum/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA