Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(5): 879-894.e6, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35443157

RESUMEN

The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid ß plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aß-pathology-dependent IFN-I activation in microglia and other cell types. Long-term blockade of IFN-I receptor (IFNAR) rescued both memory and synaptic deficits and resulted in reduced microgliosis, inflammation, and neuritic pathology. Microglia-specific Ifnar1 deletion attenuated the loss of post-synaptic terminals by selective engulfment, whereas neural Ifnar1 deletion restored pre-synaptic terminals and decreased plaque accumulation. Overall, IFN-I signaling represents a critical module within the neuroinflammatory network of AD and prompts concerted cellular states that are detrimental to memory and cognition.


Asunto(s)
Enfermedad de Alzheimer , Interferón Tipo I , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Inmunidad Innata , Interferón Tipo I/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo
2.
Brain ; 147(8): 2706-2717, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650574

RESUMEN

Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.


Asunto(s)
Encéfalo , Leptina , Neurogénesis , Receptores de Leptina , Animales , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ratones , Encéfalo/metabolismo , Leptina/deficiencia , Leptina/metabolismo , Neurogénesis/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/genética , Atrofia/patología
3.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092269

RESUMEN

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Asunto(s)
Dolor Crónico , Clemastina , Humanos , Animales , Ratones , Clemastina/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Vaina de Mielina/metabolismo , Sistema Nervioso Central , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo
4.
Biochem Biophys Res Commun ; 727: 150270, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917617

RESUMEN

Neuroinflammation has been implicated in cognitive deficits of neurological and neurodegenerative diseases. There is abundant evidence that the application of ghrelin, an orexigenic hormone regulating appetite and energy balance, abrogates neuroinflammation and rescues associated memory impairment. However, the underlying mechanism is uncertain. In this study, we find that both intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) impairs spatial memory in mice. LPS treatment causes neuroinflammation and microglial activation in the hippocampus. Ghsr1a deletion suppresses LPS-induced microglial activation and neuroinflammation, and rescued LPS-induced memory impairment. Our findings thus suggest that GHS-R1a signaling may promote microglial immunoactivation and contribute to LPS-induced neuroinflammation. GHS-R1a may be a new therapeutic target for cognitive dysfunction associated with inflammatory conditions.


Asunto(s)
Lipopolisacáridos , Trastornos de la Memoria , Ratones Endogámicos C57BL , Microglía , Receptores de Ghrelina , Memoria Espacial , Animales , Memoria Espacial/efectos de los fármacos , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratones , Masculino , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ratones Noqueados , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología
5.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632655

RESUMEN

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neuralgia , Ratas , Animales , MicroARNs/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Células de Schwann/metabolismo , Vesículas Extracelulares/metabolismo
6.
Epilepsia ; 65(4): 1128-1140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38299621

RESUMEN

OBJECTIVE: Children with self-limited epilepsy characterized by centrotemporal spikes (SeLECTS) exhibit cognitive deficits in memory during the active phase, but there is currently a lack of studies and techniques to assess their memory development after well-controlled seizures. In this study, we employed eye-tracking techniques to investigate visual memory and its association with clinical factors and global intellectual ability, aiming to identify potential risk factors by examining encoding and recognition processes. METHODS: A total of 26 recruited patients diagnosed with SeLECTS who had been seizure-free for at least 2 years, along with 24 control subjects, underwent Wechsler cognitive assessment and an eye-movement-based memory task while video-electroencephalographic (EEG) data were recorded. Fixation and pupil data related to eye movements were utilized to detect distinct memory processes and subsequently to compare the cognitive performance of patients exhibiting different regression patterns on EEG. RESULTS: The findings revealed persistent impairments in visual memory among children with SeLECTS after being well controlled, primarily observed in the recognition stage rather than the encoding phase. Furthermore, the age at onset, frequency of seizures, and interictal epileptiform discharges exhibited significant correlations with eye movement data. SIGNIFICANCE: Children with SeLECTS exhibit persistent recognition memory impairment after being well controlled for the disease. Controlling the frequency of seizures and reducing prolonged epileptiform activity may improve memory cognitive development. The application of the eye-tracking technique may provide novel insights into exploring memory cognition as well as underlying mechanisms associated with pediatric epilepsy.


Asunto(s)
Epilepsia Rolándica , Tecnología de Seguimiento Ocular , Humanos , Niño , Convulsiones/diagnóstico , Cognición , Electroencefalografía/métodos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/complicaciones , Epilepsia Rolándica/complicaciones , Epilepsia Rolándica/psicología
7.
Behav Brain Funct ; 20(1): 7, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575965

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) are debilitating neurodegenerative diseases for which there are currently no cures. Familial cases with known genetic causes make up less than 10% of these diseases, and little is known about the underlying mechanisms that contribute to sporadic disease. Accordingly, it is important to expand investigations into possible pathways that may contribute to disease pathophysiology. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a membrane-bound enzyme that acts at the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers distinct proteins to the membrane. GDE2 abnormally accumulates in intracellular compartments in the brain of patients with AD, ALS, and ALS/FTD, indicative of GDE2 dysfunction. Mice lacking GDE2 (Gde2KO) show neurodegenerative changes such as neuronal loss, reduced synaptic proteins and synapse loss, and increased Aß deposition, raising the possibility that GDE2 disruption in disease might contribute to disease pathophysiology. However, the effect of GDE2 loss on behavioral function and learning/memory has not been characterized. RESULTS: Here, we show that GDE2 is expressed throughout the adult mouse brain in areas including the cortex, hippocampus, habenula, thalamus, and amygdala. Gde2KO and WT mice were tested in a set of behavioral tasks between 7 and 16 months of age. Compared to WT, Gde2KO mice display moderate hyperactivity that becomes more pronounced with age across a variety of behavioral tests assessing novelty-induced exploratory activity. Additionally, Gde2KO mice show reduced startle response, with females showing additional defects in prepulse inhibition. No changes in anxiety-associated behaviors were found, but Gde2KOs show reduced sociability. Notably, aged Gde2KO mice demonstrate impaired short/long-term spatial memory and cued fear memory/secondary contextual fear acquisition. CONCLUSIONS: Taken together, these observations suggest that loss of GDE2 leads to behavioral deficits, some of which are seen in neurodegenerative disease models, implying that loss of GDE2 may be an important contributor to phenotypes associated with neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Anciano , Animales , Femenino , Humanos , Ratones , Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Memoria , Trastornos de la Memoria/genética , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética
8.
Mol Biol Rep ; 51(1): 640, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727848

RESUMEN

Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.


Asunto(s)
Trastornos de la Memoria , Metformina , Metformina/uso terapéutico , Metformina/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Humanos , Animales , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Memoria/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
9.
Mol Biol Rep ; 51(1): 782, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918289

RESUMEN

Alcohol consumption is known to have detrimental effects on memory function, with various studies implicating ethanol in the impairment of cognitive processes related to memory retention and retrieval. This review aims to elucidate the complex neurobiological mechanisms underlying ethanol-induced memory impairment. Through a thorough search of existing literature using electronic databases, relevant articles focusing on the neurobiological mechanisms of ethanol on memory were identified and critically evaluated. This review focuses on the molecular and neural pathways through which ethanol exerts its effects on memory formation, consolidation, and recall processes. Key findings from the included studies shed light on the impact of ethanol on neurotransmitter systems, synaptic plasticity, and neuroinflammation in relation to memory impairment. This review contributes to a better understanding of the intricate mechanisms by which alcohol impairs memory function, offering insights for future research directions and the development of targeted interventions to alleviate these cognitive impairments.


Asunto(s)
Encéfalo , Etanol , Trastornos de la Memoria , Plasticidad Neuronal , Humanos , Etanol/efectos adversos , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Animales , Plasticidad Neuronal/efectos de los fármacos , Memoria/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Enfermedades Neuroinflamatorias , Neurotransmisores/metabolismo
10.
Metab Brain Dis ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136806

RESUMEN

Global cerebral ischemia is one of the major causes of memory and cognitive impairment. Hyperactivation of acetylcholine esterase (AChE), oxidative stress, and inflammation are reported to cause memory and cognitive impairment in global cerebral ischemia. Morin, a flavonoid, is reported to have neuroprotective properties through its antioxidant and anti-inflammatory in multiple neurological diseases. However, its neuroprotective effects and memory and cognition enhancement have not yet been investigated. In the present study, we have determined the memory and cognition, and neuroprotective activity of Morin in bilateral common carotid artery occlusion and reperfusion (BCCAO/R) in Wistar rats. We found that Morin treatment significantly improved motor performance like grip strength and rotarod. Further, Morin improved memory and cognition in BCCAO rats by decreasing the AchE enzyme activity and enhancing the acetylcholine (Ach) levels. Additionally, Morin exhibited neuroprotection by ameliorating oxidative stress, neuroinflammation, and apoptosis in BCCAO rats. These findings confirm that Morin could enhance memory and cognition by ameliorating AchE activity, oxidative stress, neuroinflammation, and apoptosis in global cerebral ischemia. Therefore, Morin could be a promising neuroprotective and memory enhancer against global cerebral ischemic injury.

11.
Phytother Res ; 38(7): 3489-3508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695373

RESUMEN

Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1ß, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1ß, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aß1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-ß, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.


Asunto(s)
Lipopolisacáridos , Trastornos de la Memoria , Microglía , FN-kappa B , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Granada (Fruta) , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Ratones , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Granada (Fruta)/química , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Polifenoles/farmacología , Péptidos beta-Amiloides , Línea Celular , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Ratones Endogámicos C57BL , Conducta Animal/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas
12.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612831

RESUMEN

Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.


Asunto(s)
Saponinas , Triterpenos , Humanos , Animales , Ratones , Acetilcolinesterasa , Saponinas/farmacología , Triterpenos/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Lipopolisacáridos/toxicidad
13.
J Neurochem ; 167(3): 441-460, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37814468

RESUMEN

Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.


Asunto(s)
Malaria Cerebral , Enfermedades Neurodegenerativas , Animales , Ratones , Humanos , Malaria Cerebral/terapia , Malaria Cerebral/complicaciones , Proteínas tau , Enfermedades Neuroinflamatorias , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Cognición , Inmunoterapia , Enfermedades Neurodegenerativas/patología , Encéfalo/patología
14.
Neurobiol Dis ; 186: 106275, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648038

RESUMEN

Typical absence seizures (ASs) are brief periods of lack of consciousness, associated with 2.5-4 Hz spike-wave discharges (SWDs) in the EEG, which are highly prevalent in children and teenagers. The majority of probands in these young epileptic cohorts show neuropsychological comorbidities, including cognitive, memory and mood impairments, even after the seizures are pharmacologically controlled. Similar cognition and memory deficits have been reported in different, but not all, genetic animal models of ASs. However, since these impairments are subtle and highly task-specific their presence may be confounded by an anxiety-like phenotype and no study has tested anxiety and memory in the same animals. Moreover, the majority of studies used non-epileptic inbred animals as the only control strain and this may have contributed to a misinterpretation of these behavioural results. To overcome these issues, here we used a battery of behavioural tests to compare anxiety and memory in the same animals from the well-established inbred model of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), their inbred strain of Non-Epileptic Control (NEC) strain (that lack ASs) and normal outbred Wistar rats. We found that GAERS do not exhibit increased anxiety-like behavior and neophobia compared to both NEC and Wistar rats. In contrast, GAERS show decreased spontaneous alternation, spatial working memory and cross-modal object recognition compared to both NEC and Wistar rats. Furthermore, GAERS preferentially used egocentric strategies to perform spatial memory tasks. In summary, these results provide solid evidence of memory deficits in GAERS rats that do not depend on an anxiety or neophobic phenotype. Moreover, the presence of differences between NEC and Wistar rats stresses the need of using both outbred and inbred control rats in behavioural studies involving genetic models of ASs.


Asunto(s)
Ansiedad , Convulsiones , Humanos , Niño , Adolescente , Ratas , Animales , Ratas Wistar , Cognición , Trastornos de la Memoria
15.
Hippocampus ; 33(2): 96-111, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36541921

RESUMEN

MiRNA-124 has been considered to play a significant role in the formation of memory and a variety of neurodegenerative diseases. In this study, the aim is to verify whether miRNA-124 is involved in memory impairment induced by d-galactose, and explore the underlying neuroprotective mechanism. The results revealed that rapid administration of d-galactose (1000 mg/kg subcutaneously) in mice caused memory impairments, as determined by Novel Object Recognition test, Morris Water Maze test, and histological assessments. MiRNA-124 agomir is stereotactic injected into hippocampus, thus alleviated memory impairment induced by d-galactose and reversed the neural damage and neuroinflammation. Furthermore, the results of molecular biological analysis and immunohistochemistry revealed that miRNA-124 markedly reduced neuroinflammation induced by d-galactose through polarization of microglia as determined by detection of ionized calcium binding adapter molecule 1 (Iba-1), inducible nitric oxide synthase (iNOS) and arginase-1(Arg-1), which also downregulated inflammatory mediators, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and upregulated IL-4 and IL-10. Hence, taken together, the results of the present study suggested that miRNA-124 showed a significant negative correlation with memory impairment and neuroinflammation induced by d-galactose rapidly, possibly via polarization of microglia from M1 to M2. It is possible that miRNA-124 can be used as a new target for the pathogenesis of memory impairment, including age-associated neurodegenerative diseases such as Alzheimer's disease.


Asunto(s)
Galactosa , MicroARNs , Ratas , Ratones , Animales , Masculino , Galactosa/toxicidad , Galactosa/metabolismo , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo
16.
Hum Brain Mapp ; 44(8): 3283-3301, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972323

RESUMEN

Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.


Asunto(s)
Envejecimiento , Memoria Episódica , Persona de Mediana Edad , Adulto Joven , Humanos , Anciano , Envejecimiento/psicología , Encéfalo/diagnóstico por imagen , Recuerdo Mental , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas
17.
J Neuroinflammation ; 20(1): 283, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012702

RESUMEN

As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Animales , Humanos , Trastorno Depresivo Mayor/metabolismo , Depresión , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Neurogénesis/fisiología , Mamíferos
18.
J Med Virol ; 95(2): e28459, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36602051

RESUMEN

The aim of this study is to demonstrate the prevalence of the long-term side effects of COVID-19, namely memory impairment among recovered patients, and obtaining the associated factors that link with memory impairment. It is a cross-sectional retrospective cohort study, that has been conducted from September to November 2022 in Iraq. People who were previously infected with COVID-19 were included. The study was performed by asking people to complete a questionnaire platform by either online or face-to-face interview. The Memory Assessment Clinic-Q (MAC-Q) test was utilized, scores that are equal or higher than 25 are indicative of memory decline. Thousand two hundred and eighty-seven participated in this study. However, only 1157 were included in the final analysis. Three hundred ninety-nine (34.49%) have memory impairment after COVID-19 recovery. Female gender, older age group, repeated exposure to COVID-19 infections, severe diseases, and exposure to multiple SARS-CoV-2 variants were independent risk factors of memory deficit in post-COVID-19 survivors with a p-value of 0.0001, 0.02, 0.0001, 0.001, 0.0001 respectively. It is crucial to pay particular attention to psychosocial rehabilitation of such risky groups. COVID-19 vaccine administrations with booster shots are necessary steps to decrease the disease incidence and avoid subsequent post-COVID-19 symptoms.


Asunto(s)
COVID-19 , Humanos , Femenino , Anciano , Prevalencia , Vacunas contra la COVID-19 , SARS-CoV-2 , Estudios Transversales , Estudios Retrospectivos , Trastornos de la Memoria , Factores de Riesgo
19.
Neurochem Res ; 48(12): 3485-3511, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578655

RESUMEN

Xanthones are natural secondary metabolites that possess great potential as neuroprotective agents due to their prominent biological effects on Alzheimer's disease (AD). However, their underlying mechanisms in AD remain unclear. This study aimed to systematically review the effects and mechanisms of xanthones in cell culture and animal studies, gaining a better understanding of their roles in AD. A comprehensive literature search was conducted in the Medline and Scopus databases using specific keywords to identify relevant articles published up to June 2023. After removing duplicates, all articles were imported into the Rayyan software. The article titles were screened based on predefined inclusion and exclusion criteria. Relevant full-text articles were assessed for biases using the OHAT tool. The results were presented in tables. Xanthones have shown various pharmacological effects towards AD from the 21 preclinical studies included. Cell culture studies demonstrated the anti-cholinesterase activity of xanthones, which protects against the loss of acetylcholine. Xanthones exhibited neuroprotective effects by promoting cell viability, reducing the accumulation of ß-amyloid and tau aggregation. The administration of xanthones in animal models resulted in a reduction in neuronal inflammation by decreasing microglial and astrocyte burden. In terms of molecular mechanisms, xanthones prevented neuroinflammation through the modulation of signaling pathways, including TLR4/TAK1/NF-κB and MAPK pathways. Mechanisms such as activation of caspase-3 and -9 and suppression of endoplasmic reticulum stress were also reported. Despite the various neuroprotective effects associated with xanthones, there are limited studies reported on their underlying mechanisms in AD. Further studies are warranted to fully understand their potential roles in AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Xantonas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Xantonas/farmacología
20.
J Sleep Res ; : e14108, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035770

RESUMEN

Sleep disturbances are prevalent in Alzheimer's disease (AD), affecting individuals during its early stages. We investigated associations between subjective sleep measures and cerebrospinal fluid (CSF) biomarkers of AD in adults with mild cognitive symptoms from the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, considering the influence of memory performance. A total of 442 participants aged >50 years with a Clinical Dementia Rating (CDR) score of 0.5 completed the Pittsburgh Sleep Quality Index questionnaire and underwent neuropsychological assessment, magnetic resonance imaging acquisition, and CSF sampling. We analysed the relationship of sleep quality with CSF AD biomarkers and cognitive performance in separated multivariate linear regression models, adjusting for covariates. Poorer cross-sectional sleep quality was associated with lower CSF levels of phosphorylated tau and total tau alongside better immediate and delayed memory performance. After adjustment for delayed memory scores, associations between CSF biomarkers and sleep quality became non-significant, and further analysis revealed that memory performance mediated this relationship. In post hoc analyses, poorer subjective sleep quality was associated with lesser hippocampal atrophy, with memory performance also mediating this association. In conclusion, worse subjective sleep quality is associated with less altered AD biomarkers in adults with mild cognitive symptoms (CDR score 0.5). These results could be explained by a systematic recall bias affecting subjective sleep assessment in individuals with incipient memory impairment. Caution should therefore be exercised when interpreting subjective sleep quality measures in memory-impaired populations, emphasising the importance of complementing subjective measures with objective assessments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA