Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363878

RESUMEN

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Asunto(s)
Metales Pesados , Nanoestructuras , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Temperatura , Nanotecnología
2.
Angew Chem Int Ed Engl ; 63(44): e202411543, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39115459

RESUMEN

Dual-atom catalysts (DACs) are promising for applications in electrochemical CO2 reduction due to the enhanced flexibility of the catalytic sites and the synergistic effect between dual atoms. However, precisely controlling the atomic distance and identifying the dual-atom configuration of DACs to optimize the catalytic performance remains a challenge. Here, the Ni and Fe atomic pairs were constructed on nitrogen-doped carbon support in three different configurations: NiFe-isolate, NiFe-N bridge, and NiFe-bonding. It was found that the NiFe-N bridge catalyst with NiN4 and FeN4 sharing two N atoms exhibited superior CO2 reduction activity and promising stability when compared to the NiFe-isolate and NiFe-bonding catalysts. A series of characterizations and density functional theory calculations suggested that the N-bridged NiFe sites with an appropriate distance between Ni and Fe atoms can exert a more pronounced synergy. It not only regulated the suitable adsorption strength for the *COOH intermediate but also promoted the desorption of *CO, thus accelerating the CO2 electroreduction to CO. This work provides an important implication for the enhancement of catalysis by the tailoring of the coordination structure of DACs, with the identification of distance effect between neighboring dual atoms.

3.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298154

RESUMEN

The spike protein (S) of SARS-CoV-2 is able to bind to the human angiotensin-converting enzyme 2 (ACE2) receptor with a much higher affinity compared to other coronaviruses. The binding interface between the ACE2 receptor and the spike protein plays a critical role in the entry mechanism of the SARS-CoV-2 virus. There are specific amino acids involved in the interaction between the S protein and the ACE2 receptor. This specificity is critical for the virus to establish a systemic infection and cause COVID-19 disease. In the ACE2 receptor, the largest number of amino acids playing a crucial role in the mechanism of interaction and recognition with the S protein is located in the C-terminal part, which represents the main binding region between ACE2 and S. This fragment is abundant in coordination residues such as aspartates, glutamates, and histidine that could be targeted by metal ions. Zn2+ ions bind to the ACE2 receptor in its catalytic site and modulate its activity, but it could also contribute to the structural stability of the entire protein. The ability of the human ACE2 receptor to coordinate metal ions, such as Zn2+, in the same region where it binds to the S protein could have a crucial impact on the mechanism of recognition and interaction of ACE2-S, with consequences on their binding affinity that deserve to be investigated. To test this possibility, this study aims to characterize the coordination ability of Zn2+, and also Cu2+ for comparison, with selected peptide models of the ACE2 binding interface using spectroscopic and potentiometric techniques.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , Unión Proteica , Aminoácidos/metabolismo , Zinc
4.
Angew Chem Int Ed Engl ; 62(49): e202310191, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37849070

RESUMEN

The development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real-working conditions. Herein, we describe the design and synthesis of oxide-metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2 , an oxide/metal inverse catalyst with non-classical oxygen-saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra-small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2 O). In particular, the core (Pd)-shell (TiO2 ) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2 O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd-O-Ti sites (of oxygen-saturated overlayers) serve as non-metal active sites for low-temperature CO oxidation, and change the SO2 adsorption from metal(d)-to-SO2 (π*) back-bonding to much weaker σ(Ti-S) bonding.

5.
Angew Chem Int Ed Engl ; 62(42): e202306469, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37312248

RESUMEN

Dual-atom catalysts (DACs) have been a new frontier in heterogeneous catalysis due to their unique intrinsic properties. The synergy between dual atoms provides flexible active sites, promising to enhance performance and even catalyze more complex reactions. However, precisely regulating active site structure and uncovering dual-atom metal interaction remain grand challenges. In this review, we clarify the significance of the inter-metal interaction of DACs based on the understanding of active center structures. Three diatomic configurations are elaborated, including isolated dual single-atom, N/O-bridged dual-atom, and direct dual-metal bonding interaction. Subsequently, the up-to-date progress in heterogeneous oxidation reactions, hydrogenation/dehydrogenation reactions, electrocatalytic reactions, and photocatalytic reactions are summarized. The structure-activity relationship between DACs and catalytic performance is then discussed at an atomic level. Finally, the challenges and future directions to engineer the structure of DACs are discussed. This review will offer new prospects for the rational design of efficient DACs toward heterogeneous catalysis.

6.
Environ Sci Technol ; 56(22): 16001-16011, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269707

RESUMEN

Metal exposure has been associated with risk of various cardio-metabolic disorders, and investigation on the association between exposure to multiple metals and metabolic responses may reveal novel clues to the underlying mechanisms. Based on a metabolome-wide association study of 17 plasma metals with untargeted metabolomic profiling of 189 serum metabolites among 1992 participants within the Dongfeng-Tongji cohort, we replicated two metal-associated pathways, linoleic acid metabolism and aminoacyl-tRNA biosynthesis, with novel metal associations (false discovery rate, FDR < 0.05), and we also identified two novel pathways, including biosynthesis of unsaturated fatty acids and alpha-linolenic acid metabolism, as associated with metal exposure (FDR < 0.05). Moreover, two-way orthogonal partial least-squares analysis showed that five metabolites, including aspartylphenylalanine, free fatty acid 14:1, uridine, carnitine C14:2, and LPC 18:2, contributed most to the joint covariation between the two data matrices (12.3%, 8.3%, 8.0%, 7.4%, and 7.3%, respectively). Further BKMR analysis showed significant positive joint associations of plasma Al, As, Ba, and Zn with aspartylphenylalanine and of plasma Ba, Co, Mn, and Pb with carnitine C14:2, when all the metals were at the 55th percentiles or above, compared with the median. We also found significant interactions between As and Ba in the association with aspartylphenylalanine (P for interaction = 0.048) and between Ba and Pb in the association with carnitine C14:2 (P for interaction < 0.001). Together, these findings may provide new insights into the mechanisms underlying the adverse health effects induced by metal exposure.


Asunto(s)
Plomo , Metaboloma , Adulto , Humanos , Persona de Mediana Edad , Anciano , Metabolómica , Carnitina , China
7.
Environ Res ; 214(Pt 3): 114031, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934145

RESUMEN

Studies on associations of metals with leucocyte telomere length (LTL) were mainly limited to several most common toxic metals and single-metal effect, but the impact of other common metals and especially the overall joint associations and interactions of metal mixture with LTL are largely unknown. We included 15 plasma metals and LTL among 4906 participants from Dongfeng-Tongji cohort. Multivariable linear regression was used to estimate associations of individual metals with LTL. We also applied Bayesian kernel machine regression (BKMR) and quantile g-computation regression (Q-g) to evaluate the overall association and interactions, and identified the major contributors as well as the potential modifications by major characteristics. Multivariable linear regression found vanadium, copper, arsenic, aluminum and nickel were negatively associated with LTL, and a 2-fold change was related to 1.9%-5.1% shorter LTL; while manganese and zinc showed 3.7% and 4.0% longer LTL (all P < 0.05) in multiple-metal models. BKMR confirmed above metals and revealed a linearly inverse joint association between 15 metals and LTL. Q-g regression further indicated each quantile increase in mixture was associated with 5.2% shorter LTL (95% CI: -8.1%, -2.3%). Furthermore, manganese counteracted against aluminum and vanadium respectively (Pint<0.05). In addition, associations of vanadium, aluminum and metal mixture with LTL were more prominent in overweight participants. Our results are among the first to provide a new comprehensive view of metal mixture exposure on LTL attrition in the general population, including identifying the major components, metals interactions and the overall effects.


Asunto(s)
Aluminio , Manganeso , Anciano , Teorema de Bayes , China , Humanos , Persona de Mediana Edad , Telómero , Vanadio/toxicidad
8.
J Basic Microbiol ; 62(12): 1446-1456, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36261394

RESUMEN

Exopolymeric substances (EPS) produced by bacterial cells play a crucial role in the interaction of the cells with the surrounding environment. Halobacillus trueperi manxer mangrove-16, an adhered bacterial isolate from the mangrove ecosystem was found to produce EPS that was observed by Alcian blue staining and congo red-coomassie blue agar. The EPS of the bacterial isolate exhibited emulsifying properties. Purification of the EPS by dialysis showed an emulsification index of 80% with hexadecane. Qualitative analysis and Fourier's Infrared spectroscopy (FTIR) revealed that the EPS was a glycoprotein in nature. The EPS showed no surface-active properties. Further exploration of the potential of the EPS interaction with metal solutions showed the ability of the bioemulsifier to cause precipitation in the metal solutions and particularly change the color of the Chromium (VI) solution. The scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of the cells and EPS particularly indicated the interaction of the EPS with the (Fe0 ) zerovalent iron nanoparticles and its effect on the cells and EPS of the bacteria. It is therefore concluded that the EPS is a crucial component that anchors the bacteria to particulate matter in the mangrove ecosystem and also plays an important role in interaction with metals and hydrocarbons.


Asunto(s)
Ecosistema , Halobacillus , Matriz Extracelular de Sustancias Poliméricas , Bacterias , Metales
9.
J Environ Manage ; 318: 115643, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35949092

RESUMEN

Aiming at the synchronous elimination of heavy metals and organic contaminants from wastewater, the amidoxime functionalized PVDF-based chelating membrane was fabricated in this study. The structure and morphology of the chelating membrane were characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectrometer (NMR) and scanning electron microscopy (SEM). The SEM results show that the chemical modification with amidoxime groups did not damage the structure of the PVDF-based membrane. The chelating membrane has a high removal efficiency for Cu2+ (77.33%) and Pb2+ (79.23%) owing to the chemisorption through coordination bonds. However, the chelating membrane exhibits a low removal efficiency for Cd2+ (29.88%) due to the physical adsorption. The chelating membrane has a high rejection efficiency of BSA (95.17%) and lysozyme (70.09%), which is attributed to the sieving effect and increased hydrophobicity. Furthermore, the membrane performance for simultaneously removing metals and proteins from simulated wastewater was examined. The interaction of metal ions with proteins (BSA and lysozyme) can enhance the ion removal efficiency of the chelated membrane, but decrease the protein rejection efficiency due to the destructive effect. The amidoxime functionalized PVDF-based chelating membrane has a high potential for application in wastewater treatment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Quelantes/química , Polímeros de Fluorocarbono , Iones , Metales Pesados/química , Muramidasa , Oximas , Polivinilos , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales/química , Contaminantes Químicos del Agua/química
10.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630738

RESUMEN

The self-assembly of discrete cyanometallates has attracted significant interest due to the potential of these materials to undergo soft metallophilic interactions as well as their optical properties. Diblock copolypeptide amphiphiles have also been investigated concerning their capacity for self-assembly into morphologies such as nanostructures. The present work combined these two concepts by examining supramolecular hybrids comprising cyanometallates with diblock copolypeptide amphiphiles in aqueous solutions. Discrete cyanometallates such as [Au(CN)2]-, [Ag(CN)2]-, and [Pt(CN)4]2- dispersed at the molecular level in water cannot interact with each other at low concentrations. However, the results of this work demonstrate that the addition of diblock copolypeptide amphiphiles such as poly-(L-lysine)-block-(L-cysteine) (Lysm-b-Cysn) to solutions of these complexes induces the supramolecular assembly of the discrete cyanometallates, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Electron microscopy images confirmed the formation of nanostructures of several hundred nanometers in size that grew to form advanced nanoarchitectures, including those resembling the original nanostructures. This concept of combining diblock copolypeptide amphiphiles with discrete cyanometallates allows the design of flexible and functional supramolecular hybrid systems in water.


Asunto(s)
Nanoestructuras , Agua , Microscopía Electrónica , Nanoestructuras/química
11.
Angew Chem Int Ed Engl ; 61(41): e202209529, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998086

RESUMEN

Template-assisted synthesis of well-defined polynuclear clusters remains a challenge for [M4 ] square planar topologies. Herein, we present a tetraamine scaffold R L(NH2 )4 , where L is a rigidified resorcin[4]arene, to direct the formation of C4 -symmetric R L(NH)4 Cu4 clusters with Cu-Cu distances around 2.7 Å, suggesting metal-metal direct interactions are operative since the sum of copper's van der Waals radii is 2.8 Å. DFT calculations display HOMO to HOMO-3 residing all within a 0.1 eV gap. These four orbitals display significant electron density contribution from the Cu centers suggesting a delocalized electronic structure. The one-electron oxidized [Cu4 ]+ species was probed by variable temperature X-band continuous wave-electron paramagnetic resonance (CW-EPR), which displays a multiline spectrum at room temperature. This work presents a novel synthetic strategy for [M4 ] clusters and a new platform to investigate activation of small molecules.

12.
Biometals ; 34(4): 761-793, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961184

RESUMEN

Rapid industrial development is responsible for severe problems related to environmental pollution. Many human and industrial activities require different metals and, as a result, great amounts of metals/heavy metals are discharged into the water and soil making them dangerous for both human and ecosystems and this is being aggravated by intensive demand and utilization. In addition, compounds with metal binding capacities are needed to be used for several purposes including in activities related to the removal and/or recovery of metals from effluents and soils, as metals' corrosion inhibitors, in the synthesis of metallic nanoparticles and as metal related pharmaceuticals, preferably a with minimum risks associated to the environment. Plants are able to synthesize an uncountable number of compounds with numerous functions, including compounds with metal binding capabilities. In fact, some of the plants' secondary metabolites can bind to various metals through different mechanisms, as such they are excellent sources of such compounds due to their high availability and vast diversity. In addition, the use of plant-based compounds is desirable from an environmental and economical point of view, thus being potential candidates for utilization in different industrial activities, replacing conventional physiochemical methods. This review focuses on the ability of some classes of compounds that can be found in relatively high concentrations in plants, having good metal binding capacities and thus with potential utilization in metal based industrial activities and that can be involved in the progressive development of new environmentally friendly strategies.


Asunto(s)
Metales Pesados/metabolismo , Plantas/metabolismo , Biodegradación Ambiental , Humanos , Residuos Industriales , Metales Pesados/química , Plantas/química
13.
Xenobiotica ; 51(7): 842-851, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33929283

RESUMEN

1. Non-essential heavy metals such as mercury (Hg), arsenic (As), cadmium (Cd), and aluminium (Al) are useless to organisms and have shown extensive toxic effects. Previous studies show that two main molecular mechanisms of metal toxicity are oxidative stress and metal-metal interaction which can disrupt metal homeostasis.2. In this paper, we mainly illustrate metal toxicity and metal-metal interaction through examples in mammalians and D. melanogaster (fruit fly).3. We describe the interference of metal homeostasis by metal-metal interactions in three aspects including replacement, cellular transporter competition, and disruption of the regulation mechanism, and elaborate the mechanisms of metal toxicity to better deal with the challenges of heavy metal pollution and related health problems.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Animales , Cadmio/toxicidad , Drosophila melanogaster , Metales Pesados/toxicidad
14.
J Comput Chem ; 41(7): 698-714, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31804728

RESUMEN

Geometry optimization, energetics, electronic structure, and topology of electron density of dicopper (I) and dichromium (II) tetrakis(µ-acetato)-diaqua complexes are studied focusing on the metal-metal interactions. The performance of broken symmetry (BS) single-determinant ab initio (Hartree-Fock, Møller-Plesset perturbation theory to the second and third orders, coupled clusters singles and doubles) and density functional theory (BLYP, B3LYP, B3LYP-D3, B2PLYP, MPW2PLYP) methods is compared to multideterminant ab initio (CASSCF, NEVPT2) methods as well as to the multipole model of charge density from a single-crystal X-ray diffraction experiment (Herich et al., Acta Cryst. 2018, B74, 681-692). In vacuo DFT geometry optimizations (improper axial water ligand orientation) are compared against the periodic ones. The singlet state is found to be energetically preferred. J coupling of (I) becomes underestimated for all ab initio methods used, when compared to experiment. It is concluded that the strength of the direct M─M interactions correlates closely with the J coupling magnitude at a given level of theory. The double potential well character of (II) and of the dehydrated form of (II) are considered with respect to the Cr─Cr distance. The physical effective bond order of the metal-metal interaction is small (below 0.1 e) in (I) and moderate (0.4 e) in (II). The CASSCF results overestimate the electron density of the metal-metal bond critical point by 20% and 50% in (I) and (II), respectively, when compared to the multipole model. © 2019 Wiley Periodicals, Inc.

15.
Chemistry ; 26(72): 17350-17355, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32537790

RESUMEN

The reaction of Pd(OAc)2 with free carbodicarbene (CDC) generates a Pd acetate trinuclear complex 1 via intramolecular C(sp3 )-H bond activation at one of the CDC methyl side arms. The solid structure of 1 reveals the capability of CDC to facilitate a double dative bond with two palladium centers in geminal fashion. This is attributed to the chelating mode of CDC, which can frustrate π-conjugation within the CDC framework. Such effect maybe also amplified by ligand-ligand interaction. The formation of other gem-bimetallic Pd-Pd, Pd-Au, and Ni-Au provides further structural evidence for this proof-of-concept in selective installation. Structural analysis is supported by computational calculations based on state-of-the-art energy decomposition analysis (EDA) in conjunction with natural orbitals for chemical valence (NOCV) method.

16.
Protein Expr Purif ; 175: 105719, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32750405

RESUMEN

The simultaneously functions of Metallothioneins (MTs) are relied on their metalation mechanisms that can be divided into non-cooperative, weakly cooperative and strongly cooperative mechanisms. In this study, we recombinantly synthesized OsMTI-1b, N- and C-terminal Cys-rich regions as glutathione-S-transferase (GST)-fusion proteins in E. coli. In comparison with control strains (The E. coli cells containing pET41a without gene), transgenic E. coli cells showed more tolerance against Cd2+ and Zn2+. The recombinant GST-proteins were purified using affinity chromatography. According to in vitro assays, the recombinant proteins showed a higher binding ability to Cd2+ and Zn2+. However, the affinity of apo-proteins to Cu2+ ions were very low. The coordination of Cd2+ ions in OsMTI-1b demonstrates a strongly cooperative mechanism with a priority for the C-terminal Cys-rich region that indicates the detoxifying of heavy metals as main role of P1 subfamily of MTs. While the metalation with Zn2+ conformed to a weakly cooperative mechanism with a specificity to N-terminal Cys-rich region. It implies the specific function of OsMTI-1b is involved in zinc homeostasis. Nevertheless, a non-cooperative metalation mechanism was perceived for Cu2+ that suggests the fully metalation does not occur and OsMTI-1b cannot play a significant role in dealing with Cu2+ ions.


Asunto(s)
Cadmio/química , Cobre/química , Metalotioneína , Oryza/genética , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Zinc/química , Cromatografía de Afinidad , Escherichia coli/genética , Escherichia coli/metabolismo , Metalotioneína/biosíntesis , Metalotioneína/química , Metalotioneína/genética , Metalotioneína/aislamiento & purificación , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
17.
Biochem Biophys Res Commun ; 487(3): 646-652, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28435068

RESUMEN

Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected.


Asunto(s)
Cobre/metabolismo , Drosophila/metabolismo , Hierro/metabolismo , Metalotioneína/metabolismo , Zinc/metabolismo , Animales , Metales/metabolismo
18.
Anal Bioanal Chem ; 409(28): 6605-6612, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28971232

RESUMEN

Transferrin (Tf) is the major iron-transporting protein in the human body and, for this reason, has been extensively studied in biomedicine. This protein undergoes a complex glycosylation process leading to several glycoforms, some of which are important in the diagnosis of alcohol abuse and of congenital glycosylation defects under the collective name of carbohydrate-deficient transferrin (CDT). Exploiting the Tf ability to bind not only iron but also other ions, specific attention has been devoted to binding activity towards Tb3+, which was reported to greatly enhance its intrinsic fluorescence upon the interaction with Tf. However, the structural properties of the Tb3+-Tf complex have not been described so far. In the present work, the formation of the Tf-Tb3+ complex has been investigated by the employment of several biophysical techniques, such as fluorescence resonance energy transfer (FRET), "native" mass spectrometry (MS), and near-UV circular dichroism (CD). Each method allowed the detection of the Tf-Tb3+ complex, yielding a specific signature. The interaction of Tb3+ with Fe3+-free Tf (apoTf) has been described in terms of stoichiometry, affinity, and structural effects in comparison with Fe3+. These experiments led to the first direct detection of the Tf-Tb3+ complex by MS, indicating a 1:2 stoichiometry and allowing the investigation of structural effects of metal binding. Either Tb3+ or Fe3+ binding affected protein conformation, inducing structural compaction to a similar extent. Nevertheless, near-UV CD and pH-dependence profiles suggested subtle differences in the coordination of the two metals by Tf side chains. Experimental conditions that promote complex formation have been identified, highlighting the importance of alkaline pH and synergistic ions, such as carbonate. On the basis of these studies, sample pretreatment, separation, and detection conditions of a high-performance liquid chromatographic method for CDT analysis are optimized, achieving relevant increase (by a factor of ∼3) of analytical sensitivity. Graphical abstract Schematic representation of HPLC-separated transferrin glycoforms detected by fluorescence emission of the terbium ions bound to the protein.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Complejos de Coordinación/química , Colorantes Fluorescentes/química , Terbio/química , Transferrina/análogos & derivados , Quelantes/química , Dicroismo Circular , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Transferrina/química
19.
Ecotoxicol Environ Saf ; 130: 289-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27152659

RESUMEN

Ni and Cr are ubiquitous pollutants in the aquatic environments. These heavy metals elicit toxicities to aquatic organisms including microbes. In this study, interaction of the two heavy metals on the toxicity in Escherichia coli (E. coli) was studied using FTIR spectroscopy. The binding of Ni(II) to E. coli was stronger than that for Cr(VI). Cr exhibited antagonistic effects in the presence of Ni in E. coli. FTIR analysis showed a decrease in lipid content in the presence of Ni and not for Cr. Further, a decrease in band area was observed in the region of 3000-2800cm(-1) and at ~1455cm(-1) due to a decrease in fatty acids and lipid molecules. The band area ratio of lipid was used to monitor the changes in fatty acids due to metal toxicity. Principle component method helps to discriminates the results between control and metal toxicities in E. coli from the FTIR data. The study shows the importance of metal interaction and its toxicity on E. coli.


Asunto(s)
Cromo/toxicidad , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Níquel/toxicidad , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Sep Sci ; 38(20): 3629-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248722

RESUMEN

To facilitate the implementation of affinity capillary electrophoresis into routine binding screening studies of proteins with metal ions, method acceleration, transfer and precision improvement were investigated. Affinity capillary electrophoresis was accelerated by using shorter capillaries, employing lower sample concentrations and smaller injection volumes. Intra- and inter-instrument method transfers were investigated considering the temperature setting of the capillary cooling system. For intra-instrument method transfer, similar results were obtained when transferring a method from a long (62 cm) to a short (31 cm) capillary. The analysis time was reduced from 9 to 4 min. In case of inter-instrument method transfer, interaction results showed small variation on the capillary electrophoresis instrument with inefficient capillary cooling system. Binding measurement precision was enhanced by slightly pushing the sample above the beginning of the capillary. Changing the buffer vials after each 30 runs and employing extra flushing after each 60 subsequent runs further enhanced the precision. The use of 0.1 molar ethylenediaminetetraacetic acid in the rinsing solution successfully desorbs the remaining metal ions from the capillary wall. Excellent precision for apparent mobility ratio measurements was achieved for different protein-metal ion interactions (relative standard deviation of 0.16-0.89%, 15 series, 12 runs for each).


Asunto(s)
Bario/química , Lactoglobulinas/química , Níquel/química , Ovalbúmina/química , Albúmina Sérica/química , Animales , Bovinos , Cromatografía de Afinidad , Electroforesis Capilar , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA