Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 91: 449-473, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35303792

RESUMEN

Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine.


Asunto(s)
Investigación Biomédica , Metaloproteínas , Humanos , Metaloproteínas/análisis , Metaloproteínas/química , Metaloproteínas/genética , Metales/análisis , Metales/química , Proteoma/genética , Proteómica/métodos
2.
Chemistry ; 30(60): e202402647, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158114

RESUMEN

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).


Asunto(s)
Antineoplásicos , Catálisis , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Paladio/química , Muramidasa/química , Muramidasa/metabolismo , Complejos de Coordinación/química , Arsénico/química
3.
Chemistry ; 30(9): e202303568, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38061996

RESUMEN

Selected gold complexes have been regarded as promising anti-cancer agents because they can bind with protein targets containing thiol or selenol moieties, but their clinical applications were hindered by the unbiased binding towards off-target thiol-proteins. Recently, a novel gold(III)-hydride complex (abbreviated as 1) with visible light-induced thiol reactivity has been reported as potent photo-activated anticancer agents (Angew. Chem. Int. Ed., 2020, 132, 11139). To explore new strategies to stimuli this potential antitumor drug, the effect of oriented external electric fields (OEEFs) on its geometric structure, electronic properties, and chemical reactivity was systematically investigated. Results reveal that imposing external electric fields along the Au-H bond of 1 can effectively activate this bond, which is conducive to its dissociation and the binding of Au site to potential targets. Hence, this study provides a new OEEF-strategy to activate this reported gold(III)-hydride, revealing its potential application in electrochemical therapy. We anticipate this work could promote the development of more electric field-activated anticancer agents. However, further experimental research should be conducted to verify the conclusions obtained in this work.


Asunto(s)
Antineoplásicos , Oro , Oro/química , Antineoplásicos/química , Electricidad , Compuestos de Sulfhidrilo
4.
Chem Biodivers ; : e202402083, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39429102

RESUMEN

The synthesis of three novel curcumin derivative compounds, featuring aza-crown ether macrocycles of various sizes (aza-12-crown-4, aza-15-crown-5, and aza-18-crown-6), is described. The incorporation of these aza-crown macrocycles significantly enhances their water solubility, positioning them as groundbreaking instances of curcumin derivatives that are fully soluble in aqueous environments. These curcumin ligands (L1, L2, and L3) were then reacted with zinc acetate to afford the coordination metal complexes (L1-Zn, L2-Zn, and L3-Zn). Comprehensive characterization of all compounds was achieved using various analytical techniques, including 1D and 2D NMR spectroscopy, ATR-FTIR spectroscopy, mass spectrometry (ESI+), elemental analysis and UV-Vis spectroscopy. The in vitro cytotoxic activity of both, ligands and complexes were evaluated on three human cancer cell lines (U-251, MCF-7, and SK-LU-1). Compared to conventional curcumin, these compounds demonstrated improved antiproliferative potential. Additionally, a wound healing assay was conducted to assess their antimigration properties. The obtained results suggest that these modifications to the curcumin structure represent a promising approach for developing therapeutic agents with enhanced cytotoxic properties.

5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273286

RESUMEN

The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.


Asunto(s)
Antineoplásicos , Liposomas , Neoplasias , Liposomas/química , Humanos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos
6.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39409159

RESUMEN

Research in the field of metallodrugs is continually increasing. However, it is often limited by the poor solubility in water of the metal complexes. To try to overcome this problem, the two new ligands bis-(sodium 3-methoxy-5-sulfonate-salicylaldehyde)thiocarbohydrazone (bis-TCH, Na2H4L1) and bis-(sodium 3-methoxy-5-sulfonate-salicylaldehyde)carbohydrazone (bis-CH, Na2H4L2) were synthesized and characterized, both achieving high solubility in water. The speciation of the ligands and their coordinating behaviour towards the biologically relevant Cu(II) and Zn(II) ions were studied spectroscopically and potentiometrically, determining the pKas of the ligands and the formation constants of the complex species. The monometallic and bimetallic Cu(II) and Zn(II) complexes were isolated, and the single-crystal X-ray structure of [Cu2(NaHL1)(H2O)7].3.5H2O was discussed. Finally, preliminary studies of the in vitro cytotoxic properties of the new compounds were started on normal (Hs27) and cancer (U937) cell lines. bis-TCH was able to induce a growth inhibition effect between 40% and 45% in both cell lines; bis-CH did not produce a reduction in cell viability in Hs27 cells but revealed mild antiproliferative activity after 72 h of treatment in U937 cancer cells (GI50 = 46.5 ± 4.94 µg/mL). Coordination of the Cu(II) ions increased the toxicity of the compounds, while, in contrast, Zn(II) complexes were not cytotoxic.


Asunto(s)
Complejos de Coordinación , Cobre , Hidrazonas , Solubilidad , Agua , Zinc , Zinc/química , Cobre/química , Humanos , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Agua/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ligandos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X
7.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201338

RESUMEN

This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico
8.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201489

RESUMEN

Triple-negative breast cancer (TNBC), accounting for 15-20% of all breast cancers, has one of the poorest prognoses and survival rates. Metastasis, a critical process in cancer progression, causes most cancer-related deaths, underscoring the need for alternative therapeutic approaches. This study explores the anti-migratory, anti-invasive, anti-tumoral, and antimetastatic effects of copper coordination compounds Casiopeína IIIia (CasIIIia) and Casiopeína IIgly (CasIIgly) on MDA-MB-231 and 4T1 breast carcinoma cell lines in vitro and in vivo. These emerging anticancer agents, mixed chelate copper(II) compounds, induce apoptosis by generating reactive oxygen species (ROS) and causing DNA damage. Whole-transcriptome analysis via gene expression arrays indicated that subtoxic concentrations of CasIIIia upregulate genes involved in metal response mechanisms. Casiopeínas® reduced TNBC cell viability dose-dependently and more efficiently than Cisplatin. At subtoxic concentrations (IC20), they inhibited random and chemotactic migration of MDA-MB-231 and 4T1 cells by 50-60%, similar to Cisplatin, as confirmed by transcriptome analysis. In vivo, CasIIIia and Cisplatin significantly reduced tumor growth, volume, and weight in a syngeneic breast cancer model with 4T1 cells. Furthermore, both compounds significantly decreased metastatic foci in treated mice compared to controls. Thus, CasIIIia and CasIIgly are promising chemotherapeutic candidates against TNBC.


Asunto(s)
Antineoplásicos , Cobre , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Humanos , Femenino , Cobre/química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Quelantes/farmacología , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Movimiento Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Daño del ADN/efectos de los fármacos
9.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473872

RESUMEN

The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Metano/análogos & derivados , Humanos , Selenocisteína , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Antineoplásicos/farmacología , Oro/química , Complejos de Coordinación/química
10.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000421

RESUMEN

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Relación Estructura-Actividad , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Rutenio/química , Rutenio/farmacología , Péptidos/química , Péptidos/farmacología
11.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675623

RESUMEN

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Asunto(s)
Cobre , Iminas , Piridinas , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Quelantes/química , Quelantes/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Dendrímeros/química , Iminas/química , Neoplasias/tratamiento farmacológico , Piridinas/química , Bases de Schiff/química
12.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257258

RESUMEN

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Fosfinas , Humanos , Femenino , Cisplatino , Línea Celular Tumoral , Ligandos , Paladio , Espectroscopía Infrarroja por Transformada de Fourier , Cianuros
13.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474631

RESUMEN

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Metano/análogos & derivados , Neoplasias Ováricas , Fosfinas , Femenino , Humanos , Cisplatino/química , Platino (Metal)/química , Línea Celular Tumoral , Cianuros , Espectroscopía Infrarroja por Transformada de Fourier , Complejos de Coordinación/química , Antineoplásicos/química , Ligandos
14.
Chembiochem ; 24(6): e202200621, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36445798

RESUMEN

The discovery of immunogenic cell death (ICD) by small molecules (e. g., chemotherapeutic drugs) intrigued medicinal chemists and led them to exploit anticancer agents with such a trait because ICD agents provoke anticancer immune responses in addition to their cytotoxicity. However, the unclear molecular mechanism of ICD hampers further achievements in drug development. Fortunately, increasing efforts have been made in this area in recent years by using either chemical or biological approaches. Here, we review the current achievements towards understanding the mechanisms of small molecule-induced ICD effects. Based on the established role of the unfolded protein response (UPR) in ICD, we classify the mechanisms of different inducers by their dependency on UPR. Key proteins and pathways with important implications are discussed in depth. We also give our perspectives on the research strategies for future investigation in this field.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Muerte Celular , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fenotipo
15.
J Biol Inorg Chem ; 28(2): 117-138, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456886

RESUMEN

Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , G-Cuádruplex , Complejos de Coordinación/farmacología , Ligandos , Antineoplásicos/farmacología , ADN/química
16.
Chemistry ; 29(62): e202302375, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37555841

RESUMEN

In the context of drug discovery, computational methods were able to accelerate the challenging process of designing and optimizing a new drug candidate. Amongst the possible atomistic simulation approaches, metadynamics (metaD) has proven very powerful. However, the choice of collective variables (CVs) is not trivial for complex systems. To automate the process of CVs identification, two different machine learning algorithms were applied in this study, namely DeepLDA and Autoencoder, to the metaD simulation of a well-researched drug/target complex, consisting in a pharmacologically relevant non-canonical DNA secondary structure (G-quadruplex) and a metallodrug acting as its stabilizer, as well as solvent molecules.


Asunto(s)
Aprendizaje Automático , Simulación de Dinámica Molecular , Solventes , Algoritmos , Termodinámica
17.
Chemistry ; 29(16): e202202937, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36477932

RESUMEN

Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.


Asunto(s)
Metales , Proteínas , Proteínas/química , Metales/química
18.
Chemistry ; 29(60): e202301845, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37540499

RESUMEN

The pharmacological activity of organotin(IV) complexes in cancer therapy is well recognized but their large applicability is hampered by their poor water solubility. Hence, carbon dots, in particular nitrogen-doped graphene quantum dots (NGQDs), may be a promising alternative for the efficient delivery of organotin(IV) compounds as they have a substantial aqueous solubility, a good chemical stability, and non-toxicity as well as a bright photoluminescence that make them ideal for theranostic applications against cancer. Two different multifunctional nanosystems have been synthesized and fully characterized based on two fragments of organotin-based cytotoxic compounds and 4-formylbenzoic acid (FBA), covalently grafted onto the NGQDs surface. Subsequently, an in vitro determination of the therapeutic and theranostic potential of the achieved multifunctional systems was carried out. The results showed a high cytotoxic potential of the NGQDs-FBA-Sn materials against breast cancer cell line (MDA-MB-231) and a lower effect on a non-cancer cell line (kidney cells, HEK293T). Besides, thanks to their optical properties, the dots enabled their fluorescence molecular imaging in the cytoplasmatic region of the cells pointing towards a successful cellular uptake and a release of the metallodrug inside cancer cells (NGQDs-FBA-Sn).


Asunto(s)
Grafito , Puntos Cuánticos , Neoplasias de la Mama Triple Negativas , Humanos , Grafito/química , Puntos Cuánticos/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células HEK293 , Imagen Molecular
19.
Biometals ; 36(2): 283-301, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35190937

RESUMEN

Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.


Asunto(s)
Arsénico , Arsenicales , COVID-19 , Humanos , Arsénico/uso terapéutico , Óxidos , Arsenicales/farmacología , Arsenicales/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
20.
J Microencapsul ; 40(7): 549-565, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37698449

RESUMEN

The aim of this work was to investigate novel formulations containing diruthenium(II-III)-ibuprofen (RuIbp) metallodrug encapsulated into the chitosan (CT) biopolymer. Microparticles (RuIbp/CT MPs, ∼ 1 µm) were prepared by spray-drying, and RuIbp/CT-crosslinked nanoparticles (NPs) by ionic gelation (RuIbp/CT-TPP, TPP = tripolyphosphate (1), RuIbp/CT-TPP-PEG, PEG = poly(ethyleneglycol (2)) or pre-gel/polyelectrolyte complex method (RuIbp/CT-ALG, ALG = alginate (3)). Ru analysis was conducted by energy dispersive x-ray fluorescence or inductively coupled plasma atomic emission spectroscopy, and physicochemical characterisation by powder x-ray diffraction, electronic absorption and FTIR spectroscopies, electrospray ionisation mass spectrometry, thermal analysis, scanning electron, transition electron and atomic force microscopies, and dynamic light scattering. The RuIbp-loaded nanosystems exhibited encapsulation efficiency ∼ 20-37%, drug loading∼ 10-20% (w/w), hydrodynamic diameter (nm): 103.2 ± 7.9 (1), 91.7 ± 12.6 (2), 270.2 ± 58.4 (3), zeta potential (mV): +(47.7 ± 2.8) (1), +(49.2 ± 3.6) (2), -(28.2 ± 2.0) (3). Nanoformulation (1) showed the highest cytotoxicity with increased efficacy in relation to the RuIbp free metallodrug against U87MG human glioma cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA