Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Stem Cells ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283761

RESUMEN

A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 µM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.

2.
FASEB J ; 38(17): e70022, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39250282

RESUMEN

Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by widespread fibrosis in the skin and several internal organs. Nudix Hydrolase 21 (NUDT2 or CFIm25) downregulation in fibroblasts is known to play detrimental roles in both skin and lung fibrosis. This study aims to investigate the upstream mechanisms that lead to NUDT21 repression in skin fibrosis. We identified transforming growth factor ß (TGFß1) as the primary cytokine that downregulated NUDT21 in normal skin fibroblasts. In the bleomycin-induced dermal fibrosis model, consistent with the peak activation of TGFß1 at the late fibrotic stage, NUDT21 was downregulated at this stage, and delayed NUDT21 knockdown during this fibrotic phase led to enhanced fibrotic response to bleomycin. Further investigation suggested TGFß downregulated NUDT21 through microRNA (miRNA) 181a and 181b induction. Both miR-181a and miR-181b were elevated in bleomycin-induced skin fibrosis in mice and primary fibroblasts isolated from SSc patients, and they directly targeted NUDT21 and led to its downregulation in skin fibroblasts. Functional studies demonstrated that miR-181a and miR-181b inhibitors attenuated bleomycin-induced skin fibrosis in mice in association with decreased NUDT21 expression, while miR-181a and miR-181b mimics promoted bleomycin-induced fibrosis. Overall, these findings suggest a novel role for miR-181a/b in SSc pathogenesis by repressing NUDT21 expression.


Asunto(s)
Bleomicina , Fibroblastos , Fibrosis , MicroARNs , Esclerodermia Sistémica , Piel , MicroARNs/genética , MicroARNs/metabolismo , Animales , Humanos , Ratones , Fibrosis/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/inducido químicamente , Bleomicina/toxicidad , Bleomicina/efectos adversos , Piel/patología , Piel/metabolismo , Femenino , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Ratones Endogámicos C57BL , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células Cultivadas , Regulación hacia Abajo
3.
FASEB J ; 38(9): e23635, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690685

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/metabolismo , Biomarcadores/metabolismo , Animales
4.
J Mol Cell Cardiol ; 194: 59-69, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880194

RESUMEN

Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.


Asunto(s)
Proteínas Argonautas , MicroARNs , Miocitos Cardíacos , Especies Reactivas de Oxígeno , MicroARNs/genética , MicroARNs/metabolismo , Animales , Femenino , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Masculino , Fosforilación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo , Factor de Transcripción Sp1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Complejo Silenciador Inducido por ARN/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Caracteres Sexuales
5.
J Cell Mol Med ; 28(18): e70115, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39320274

RESUMEN

The study aimed to reveal the function of LXY30 peptide-modified bone marrow mesenchymal stem cell-derived exosomes (LXY30-Exos) in NSCLC. LXY30 peptide is a peptide ligand targeting α3ß1 integrin, and LXY30 specifically binds to Exos derived from different cells. We use transmission electron microscopy to identify LXY30-Exos and tracking analysis for particles, and the LXY30-Exos internalized by NSCLC cells in vitro and targeted NSCLC tumours in vivo were verified by multiple molecular technologies. The functions of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 were assessed using cell proliferation, migration and cell apoptosis assays. Meanwhile, the safety of the above engineered Exos was evaluated in vivo. After LXY30-Exos were isolated and identified, LXY30-Exos were confirmed to be internalized by NSCLC cells in vitro and specifically targeted NSCLC tumours in vivo. Functionally, LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 weakened the proliferation, migration and cell cycle of NSCLC cells induced cellular apoptosis in vitro and restrained the tumour progression in vivo. Meanwhile, the safety of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 was confirmed in vivo. Overall, miR-30c, miR-181b and miR-613 encapsulated in LXY30 peptide-modified BMSC-Exos relieved NSCLC.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Exosomas/metabolismo , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Glia ; 72(6): 1082-1095, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385571

RESUMEN

Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.


Asunto(s)
Epilepsia , Vesículas Extracelulares , MicroARNs , Humanos , Astrocitos/metabolismo , Proteína Quinasa C-delta/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Glutámico/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo
7.
BMC Genomics ; 25(1): 628, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914980

RESUMEN

BACKGROUND: Peritoneal carcinomatosis was the main reason leading to gastric cancer (GC)-related death. We aimed to explore the roles of dysregulated microRNAs (miRNAs) and related immune regulation activities in GC-associated malignant ascites. METHODS: GSE126399 were downloaded from GEO database. Differentially expressed miRNAs in GC ascites samples was firstly screened, and critical miRNAs were further investigated by LASSO (least absolute shrinkage and selection operator) logistic regression and random forest (RF) algorithm. Receiver operating characteristic of critical miRNAs was also constructed. Moreover, functional analysis, immune cell infiltration associated with differentially expressed mRNAs were further analyzed. After selecting key modules by weighted gene co-expression network analysis, mRNAs related with survival performance and transcription factor (TF)-miRNA-mRNA network were constructed. RESULTS: Hsa-miR-181b-5p was confirmed as critical differentially expressed miRNAs in GC ascites. Then, the tumor samples were divided into high- and low- expression groups divided by mean expression levels of hsa-miR-181b-5p, and subjects with high hsa-miR-181b-5p levels had better survival outcomes. In total, 197 differentially expressed mRNAs associated with hsa-miR-181b-5p levels were obtained, and these mRNAs were mainly enriched in muscle activity and vascular smooth muscle contraction. Hsa-miR-181b-5 was positively related with activated CD4 T cells and negatively related with eosinophil. 17 mRNAs were selected as mRNAs significantly related with prognosis of GC, such as PDK4 and RAMP1. Finally, 75 TF-miRNA-mRNA relationships were obtained, including 15 TFs, hsa-miR-181b-5p, and five mRNAs. CONCLUSION: Our data suggest that the differentially expressed hsa-miR-181b-5p in ascites samples of GC patients may be a valuable prognostic marker and a potential target for therapeutic intervention, which should be validated in the near future.


Asunto(s)
Ascitis , Biomarcadores de Tumor , MicroARNs , Neoplasias Gástricas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Ascitis/genética , Ascitis/metabolismo , Ascitis/patología , Pronóstico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553975

RESUMEN

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Células Endoteliales , Pulmón , MicroARNs , ARN Largo no Codificante , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Células Endoteliales/metabolismo , Proliferación Celular/genética , MicroARNs/metabolismo , MicroARNs/genética , Movimiento Celular/genética , Animales , Pulmón/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Hipoxia de la Célula/fisiología , Ratas , Técnicas de Silenciamiento del Gen , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética
9.
BMC Cancer ; 24(1): 167, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308220

RESUMEN

Breast carcinoma (BC) ranks as a predominant malignancy and constitutes the second principal cause of mortality among women globally. Epirubicin stands as the drug of choice for BC therapeutics. Nevertheless, the emergence of chemoresistance has significantly curtailed its therapeutic efficacy. The resistance mechanisms to Epirubicin remain not entirely elucidated, yet they are conjectured to stem from diminished tumor vascular perfusion and resultant hypoxia consequent to Epirubicin administration. In our investigation, we meticulously scrutinized the Gene Expression Omnibus database for EPDR1, a gene implicated in hypoxia and Epirubicin resistance in BC. Subsequently, we delineated the impact of EPDR1 on cellular proliferation, motility, invasive capabilities, and interstitial-related proteins in BC cells, employing methodologies such as the CCK-8 assay, Transwell assay, and western blot analysis. Our research further unveiled that hypoxia-induced miR-181a-5p orchestrates the regulation of BC cell duplication, migration, invasion, and interstitial-related protein expression via modulation of EPDR1. In addition, we identified TRPC1, a gene associated with EPDR1 expression in BC, and substantiated that EPDR1 influences BC cellular dynamics through TRPC1-mediated modulation of the PI3K/AKT signaling cascade. Our findings underscore the pivotal role of EPDR1 in the development of BC. EPDR1 was found to be expressed at subdued levels in BC tissues, Epirubicin-resistant BC cells, and hypoxic BC cells. The overexpression of EPDR1 curtailed BC cell proliferation, motility, invasiveness, and the expression of interstitial-related proteins. At a mechanistic level, the overexpression of hypoxia-induced miR-181a-5p was observed to inhibit the EPDR1/TRPC1 axis, thereby activating the PI3K/AKT signaling pathway and diminishing the sensitivity to Epirubicin in BC cells. In summation, our study demonstrates that the augmentation of hypoxia-induced miR-181a-5p diminishes Epirubicin sensitivity in BC cells by attenuating EPDR1/TRPC1 expression, thereby invigorating the PI3K/AKT signaling pathway. This exposition offers a theoretical foundation for the application of Epirubicin in BC therapy, marking a significant contribution to the existing body of oncological literature.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Epirrubicina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación hacia Arriba , Transducción de Señal/genética , Proliferación Celular/genética , Hipoxia/genética , Línea Celular Tumoral
10.
Exp Eye Res ; 241: 109829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354943

RESUMEN

The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.


Asunto(s)
MicroARNs , Enfermedades de la Retina , Animales , Humanos , Ratones , Autofagia/genética , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Arriba
11.
EMBO Rep ; 23(1): e52234, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34821000

RESUMEN

γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.


Asunto(s)
Diferenciación Celular , MicroARNs , Receptor Notch2 , Linfocitos T/citología , Humanos , Activación de Linfocitos , MAP Quinasa Quinasa Quinasa 2/metabolismo , Masculino , MicroARNs/genética , Neoplasias de la Próstata , Receptor Notch2/metabolismo , Transducción de Señal
12.
Exp Brain Res ; 242(3): 571-583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218948

RESUMEN

Sevoflurane is one of the most widely used inhaled anesthetics. MicroRNAs (miRNAs) have been demonstrated to affect sevoflurane anesthesia-induced neuron damage. The purpose of this study was to investigate the role and mechanism of miR-181a-5p in sevoflurane-induced hippocampal neuronal injury. Primary hippocampal neurons were identified using microscopy and immunofluorescence. The viability and apoptosis of sevoflurane anesthesia-induced neurons were detected by cell counting kit-8 (CCK-8) assay and terminal-deoxynucleoitidyl transferase-mediated nick end-labeling (TUNEL) staining assay, respectively. The levels of apoptosis- and oxidative stress-related proteins as well as the markers in the Wnt/ß-catenin signaling pathway were examined by immunoblotting. Enzyme-linked immuno-sorbent assays were performed to examine the levels of inflammatory cytokines. Luciferase reporter assay was conducted to validate the combination between miR-181a-5p and DEAD-box helicase 3, X-linked (DDX3X). Sevoflurane exposure led to significantly inhibited hippocampal neuron viability and elevated miR-181a-5p expression. Knockdown of miR-181a-5p alleviated sevoflurane-induced neuron injury by reducing cell apoptosis, inflammatory response, and oxidative stress. Additionally, DDX3X was targeted and negatively regulated by miR-181a-5p. Moreover, miR-181a-5p inhibitor activated the Wnt/ß-catenin pathway via DDX3X in sevoflurane-treated cells. Rescue experiments revealed that DDX3X knockdown or overexpression of Wnt antagonist Dickkopf-1 (DKK1) reversed the suppressive effects of miR-181a-5p inhibitor on cell apoptosis, inflammatory response, and oxidative stress in sevoflurane-treated neuronal cells. MiR-181a-5p ameliorated sevoflurane-triggered neuron injury by regulating the DDX3X/Wnt/ß-catenin axis, suggesting the potential of miR-181a-5p as a novel and promising therapeutic target for the treatment of sevoflurane-evoked neurotoxicity.


Asunto(s)
Anestesia , MicroARNs , Humanos , Apoptosis , beta Catenina/metabolismo , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Sevoflurano/farmacología , Vía de Señalización Wnt
13.
BMC Gastroenterol ; 24(1): 337, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350070

RESUMEN

BACKGROUND: Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS: DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION: To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Decorina , Neoplasias Hepáticas , MicroARNs , Decorina/genética , Decorina/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Carcinogénesis/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Persona de Mediana Edad , Femenino , Regulación hacia Abajo
14.
Dig Dis Sci ; 69(9): 3318-3332, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38940971

RESUMEN

BACKGROUND: Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS: The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS: The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION: This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , MicroARNs , Fosfohidrolasa PTEN , Polimorfismo de Nucleótido Simple , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Fosfohidrolasa PTEN/genética , Femenino , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Regulación Neoplásica de la Expresión Génica
15.
Cell Mol Life Sci ; 81(1): 10, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38103082

RESUMEN

The formation of the BCR-ABL fusion gene drives human chronic myeloid leukemia (CML). The last 2 decades have witnessed that specific tyrosine kinase inhibitors (TKIs, e.g., imatinib mesylate, IM) against ABL1 improve disease treatment, although some patients still suffer from relapse and TKI resistance. Therefore, a better understanding of the molecular pathology of CML is still urgently needed. miR-181a-5p (miR-181a) acts as a tumor suppressor in CML; however, the molecular mechanism of miR-181a in CML stem/progenitor cells remains elusive. Herein, we showed that miR-181a inhibited the growth of CML CD34+ cells, including the quiescent subset, and sensitized them to IM treatment, while miR-181a inhibition by a sponge sequence collaborated with BCR-ABL to enhance the growth of normal CD34+ cells. Transcriptome data and biochemical analysis revealed that SERPINE1 was a bona fide and critical target of miR-181a, which deepened the understanding of the regulatory mechanism of SERPINE1. Genetic and pharmacological inhibition of SERPINE1 led to apoptosis mainly mediated by caspase-9 activation. The dual inhibition of SERPINE1 and BCR-ABL exhibited a significantly stronger inhibitory effect than a single agent. Taken together, this study demonstrates that a novel miR-181a/SERPINE1 axis modulates CML stem/progenitor cells, which likely provides an important approach to override TKI resistance.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Inhibidor 1 de Activador Plasminogénico , Humanos , Apoptosis/genética , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , MicroARNs/farmacología , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
16.
J Endocrinol Invest ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748197

RESUMEN

BACKGROUND: Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS: A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS: A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION: HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.

17.
Biochem Genet ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914847

RESUMEN

The identification of novel non-invasive biomarkers is imperative for the early diagnosis and monitoring of malignant melanoma. The objective of this study is to examine the expression levels of miR-155-5p, miR-181b-5p, and miR-454-3p in circulating cell-free RNA obtained from plasma samples of the 72 uveal malignant melanoma patients and to compare these levels with those of 72 healthy controls. The analysis showed that the expression level of the miR-181b-5p has increased 9.25 fold, and expression level of miR-155-5p has increased 6.67 fold, and miR-454-3p expression level has increased 4.14 fold in the patient group compared with the levels in the healthy control group (p = 0.005). It was found that the high expression levels of the three miRNAs were statistically significant in patients compared with in the healthy control group. The statistical evaluations between miRNA expression levels and clinical data showed that miR-155-5p had significant association with radiation therapy (p = 0.040), and miR-454-3p showed a significant association with smoking and alcohol use respectively (p = 0.009, and p = 0.026). The significantly elevated expression levels of miR-181b-5p, miR-155-5p, and miR-454-3p in the circulating cell-free RNA of plasma from uveal melanoma patients, in comparison to those in the healthy control group, suggest the potential usefulness of these biomarkers for both early diagnosis and disease monitoring. However, more extensive and future studies are needed to use these molecules in early diagnosis and disease monitoring.

18.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134636

RESUMEN

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos B
19.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063192

RESUMEN

Wool is generated by hair follicles (HFs), which are crucial in defining the length, diameter, and morphology of wool fibers. However, the regulatory mechanism of HF growth and development remains largely unknown. Dermal papilla cells (DPCs) are a specialized cell type within HFs that play a crucial role in governing the growth and development of HFs. This study aims to investigate the proliferation and induction ability of ovine DPCs to enhance our understanding of the potential regulatory mechanisms underlying ovine HF growth and development. Previous research has demonstrated that microRNA-181a (miR-181a) was differentially expressed in skin tissues with different wool phenotypes, which indicated that miR-181a might play a crucial role in wool morphogenesis. In this study, we revealed that miR-181a inhibited the proliferation and induction ability of ovine DPCs by quantitative Real-time PCR (qRT-PCR), cell counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and alkaline phosphatase staining. Then, we also confirmed G protein subunit alpha i2 (GNAI2) is a target gene of miR-181a by dual luciferase reporter assay, qRT-PCR, and Western blot, and that it could promote the proliferation and induction ability of ovine DPCs. In addition, GNAI2 could also activate the Wnt/ß-Catenin signaling pathway in ovine DPCs. This study showed that miR-181a can inhibit the proliferation and induction ability of ovine DPCs by targeting GNAI2 through the Wnt/ß-Catenin signaling pathway.


Asunto(s)
Proliferación Celular , Folículo Piloso , MicroARNs , Vía de Señalización Wnt , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ovinos , Folículo Piloso/metabolismo , Folículo Piloso/citología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Dermis/citología , Dermis/metabolismo , Células Cultivadas , Lana/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
20.
Acta Endocrinol (Buchar) ; 20(1): 33-38, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372291

RESUMEN

Objectives: The exact pathogenesis of the endometriosis is not apparent. MicroRNAs (miRNAs/miRs) are non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNAs can be used a diagnostic and therapeutic tools in different disorders such as endometriosis. MiR-181 has a function in embryo implantation. The main aim of this study is to evaluate the expression of miR-181 and its relationship with HOXA11 gene expression in ectopic and eutopic endometrium tissues in women with endometriosis. Study design: Thirty-four women participated in this study. Ectopic tissue samples (N=17) were collected via laparoscopic surgery, and eutopic tissue samples (N=17) were obtained from an endometrial biopsy. Endometrial tissue samples without endometriosis were considered the control group. Tissue samples were placed in RNase-free microtube with RNAlater™ Stabilization Solution (Thermo Fisher Scientific) and were kept at -80 °C. Quantitative real time-PCR for MiR-181 and HOXA11 genes were performed. Results: MiR-181 expression level increased in eutopic tissue samples compared to the control group. This expression showed a significantly decrease in an ectopic group compared to the eutopic group. It was observed that HOXA11expression decreased remarkably in eutopic group compared to the control group and increased in ectopic group compared to the eutopic group. Conclusion: MiR-181 and HOXA11 are promising strategies in endometriosis disease. Understanding this relation and regulation roles contribute to realizing the etiology of endometriosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA