Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33657395

RESUMEN

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Asunto(s)
Inflamación/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/inmunología , MicroARNs/genética , Células Th17/inmunología , Animales , Retroalimentación Fisiológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
2.
Semin Immunol ; 73: 101885, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788491

RESUMEN

The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.

3.
Gastroenterology ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236897

RESUMEN

Intestinal barrier function lies at a critical interface of a range of peripheral and central processes that influence disorders of gut-brain interactions (DGBI). Although rigorously tested, the role of barrier dysfunction in driving clinical phenotype of DGBI remains to be fully elucidated. In vitro, in vivo, and ex vivo strategies can test various aspects of the broader permeability and barrier mechanisms in the gut. Luminal mediators of host, bacterial, and dietary origin can influence the barrier function and a disrupted barrier can also influence the luminal milieu. Critical to our understanding is how barrier dysfunction is influenced by stress and other comorbidities that associate with DGBI and the crosstalk between barrier and neural, hormonal, and immune responses. Additionally, the microbiome's significant role in the communication between the brain and gut has led to the integrative model of a microbiome gut-brain axis with reciprocal interactions between brain networks and networks composed of multiple cells in the gut, including immune cells, enterochromaffin cells, gut microbiota and the derived luminal mediators. This review highlights the techniques for assessment of barrier function, appraises evidence for barrier dysfunction in DGBI including mechanistic studies in humans, as well as provides an overview of therapeutic strategies that can be used to directly or indirectly restore barrier function in DGBI patients.

4.
Gut ; 73(10): 1632-1649, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38740509

RESUMEN

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.


Asunto(s)
Dieta Alta en Grasa , Heces , Microbioma Gastrointestinal , Obesidad , Trisacáridos , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Trisacáridos/metabolismo , Ratones , Heces/microbiología , Heces/química , Humanos , Leche Humana/metabolismo , Leche Humana/química , Mucosa Intestinal/metabolismo , Proteoma/metabolismo , Proteoma/análisis , Moco/metabolismo , Masculino , Ratones Endogámicos C57BL , Mucinas/metabolismo
5.
Med Res Rev ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180410

RESUMEN

Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.

6.
J Transl Med ; 22(1): 406, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689349

RESUMEN

BACKGROUND: The specific pathogenesis of UC is still unclear, but it has been clear that defects in intestinal barrier function play an important role in it. There is a temporary lack of specific drugs for clinical treatment. Astragaloside IV (AS-IV) is one of the main active ingredients extracted from Astragalus root and is a common Chinese herbal medicine for the treatment of gastrointestinal diseases. This study aimed to determine whether AS-IV has therapeutic value for DSS or LPS-induced intestinal epithelial barrier dysfunction in vivo and in vitro and its potential molecular mechanisms. METHODS: The intestinal tissues from UC patients and colitis mice were collected, intestinal inflammation was observed by colonoscopy, and mucosal barrier function was measured by immunofluorescence staining. PI3K/AKT signaling pathway activator YS-49 and inhibitor LY-29 were administered to colitic mice to uncover the effect of this pathway on gut mucosal barrier modulation. Then, network pharmacology was used to screen Astragaloside IV (AS-IV), a core active component of the traditional Chinese medicine Astragalus membranaceus. The potential of AS-IV for intestinal barrier function repairment and UC treatment through blockade of the PI3K/AKT pathway was further confirmed by histopathological staining, FITC-dextran, transmission electron microscopy, ELISA, immunofluorescence, qRT-PCR, and western blotting. Finally, 16 S rRNA sequencing was performed to uncover whether AS-IV can ameliorate UC by regulating gut microbiota homeostasis. RESULTS: Mucosal barrier function was significantly damaged in UC patients and murine colitis, and the activated PI3K/AKT signaling pathway was extensively involved. Both in vivo and vitro showed that the AS-IV-treated group significantly relieved inflammation and improved intestinal epithelial permeability by inhibiting the activation of the PI3K/AKT signaling pathway. In addition, microbiome data found that gut microbiota participates in AS-IV-mediated intestinal barrier recovery as well. CONCLUSIONS: Our study highlights that AS-IV exerts a protective effect on the integrality of the mucosal barrier in UC based on the PI3K/AKT pathway, and AS-IV may serve as a novel AKT inhibitor to provide a potential therapy for UC.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Saponinas , Transducción de Señal , Triterpenos , Animales , Humanos , Masculino , Ratones , Células CACO-2 , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/uso terapéutico
7.
Exp Mol Pathol ; 139: 104923, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154390

RESUMEN

BACKGROUND & AIMS: Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS: Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS: Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS: Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.


Asunto(s)
Envejecimiento , Colon , Células Caliciformes , Mucinas , Humanos , Células Caliciformes/metabolismo , Células Caliciformes/patología , Anciano , Persona de Mediana Edad , Femenino , Masculino , Envejecimiento/patología , Mucinas/metabolismo , Colon/patología , Colon/metabolismo , Adulto , Recuento de Células , Anciano de 80 o más Años , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucina 2/metabolismo
8.
Eur J Nutr ; 63(5): 1487-1500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748287

RESUMEN

PURPOSE: Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS: The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS: Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1ß in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION: Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.


Asunto(s)
Ciclofosfamida , Mucosa Intestinal , FN-kappa B , Panax , Transducción de Señal , Animales , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , FN-kappa B/metabolismo , Panax/química , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Huésped Inmunocomprometido/efectos de los fármacos , Extractos Vegetales/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Citocinas/metabolismo
9.
J Gastroenterol Hepatol ; 39(7): 1299-1309, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38646884

RESUMEN

BACKGROUND AND AIM: Circular RNA (circRNA) has been found to mediate ulcerative colitis (UC) progression by regulating intestinal mucosal barrier function. However, the role of circSOD2 in UC process and its underlying molecular mechanism still need to be further elucidated. METHODS: Lipopolysaccharide (LPS)-induced Caco2 cells were used to mimic UC cell models. CircSOD2, miR-378g, and Snail1 levels were determined by quantitative real-time PCR. Cell viability was detected using MTT assay, and inflammatory cytokine levels were measured using ELISA. The intestinal mucosal barrier function was evaluated by testing transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran permeability. Snail1 and tight junction-related markers (Zo-1 and Claudin2) protein levels were examined using western blot. The interaction between miR-378g and circSOD2 or Snail1 was confirmed by dual-luciferase reporter assay. Dextran sulfate sodium (DSS) was used to induce UC rat models in vivo. RESULTS: CircSOD2 was overexpressed in UC patients, and its knockdown significantly increased cell viability, transepithelial electrical resistance, and tight junction-related protein expression, while reduced inflammation cytokine levels and the permeability of FITC-dextran in LPS-induced Caco2 cells. In terms of mechanism, circSOD2 sponged miR-378g to positively regulate Snail1 expression. MiR-378g inhibitor reversed the effect of circSOD2 knockdown on intestinal mucosal barrier injury and Snail1 expression in LPS-induced Caco2 cells. In DSS-induced UC rat models, circSOD2 knockdown also could repair the intestinal mucosal barrier injury through regulating miR-378g/Snail1 axis. CONCLUSION: CircSOD2 could destroy intestinal mucosal barrier function in LPS-induced Caco2 cells and DSS-induced UC rats by miR-378g/Snail1 axis.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , MicroARNs , Factores de Transcripción de la Familia Snail , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células CACO-2 , Animales , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/fisiología , Masculino , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley , Lipopolisacáridos , Permeabilidad , Expresión Génica , Funcion de la Barrera Intestinal
10.
Biol Pharm Bull ; 47(5): 1043-1053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811190

RESUMEN

Mogroside, the main component of Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae) is a natural product with hypoglycemic and intestinal microbiota regulating properties. However, whether the alteration of intestinal microbiota is associated with the antidiabetic effect of mogroside remains poorly understood. This study investigated the mechanism underlying the hypoglycemic effect of mogroside in regulating intestinal flora and attenuating metabolic endotoxemia. Kunming mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet and intraperitoneal injection of streptozotocin were randomly divided into model, pioglitazone (2.57 mg/kg) and mogroside (200, 100, and 50 mg/kg) groups. After 28 d of administration, molecular changes related to glucose metabolism and metabolic endotoxemia in mice were evaluated. The levels of insulin receptor substrate-1 (IRS-1), cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) mRNAs were measured, and the composition of intestinal microflora was determined by 16s ribosomal DNA (rDNA) sequencing. The results showed that mogroside treatment significantly improved hepatic glucose metabolism in T2DM mice. More importantly, mogroside treatment considerably reduced plasma endotoxin (inhibition rate 65.93%, high-dose group) and inflammatory factor levels, with a concomitant decrease in CD14 and TLR4 mRNA levels. Moreover, mogroside treatment reduced the relative abundance of Firmicutes and Proteobacteria (the inhibition rate of Proteobacteria was 85.17% in the low-dose group) and increased the relative abundance of Bacteroidetes (growth rate up to 40.57%, high-dose group) in the intestines of diabetic mice. This study reveals that mogroside can relieve T2DM, regulating intestinal flora and improving intestinal mucosal barrier, indicating that mogroside can be a potential therapeutic agent or intestinal microbiota regulator in the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglucemiantes , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/sangre , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Glucemia/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/uso terapéutico , Receptor Toll-Like 4/metabolismo , Endotoxemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo
11.
J Therm Biol ; 123: 103935, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39098059

RESUMEN

Climate change is an increasing concern of stakeholders worldwide. The intestine is severely impacted by the heat stress. This study aimed to investigate the alleviating effects of methionine on the intestinal damage induced by heat stress in mice. The mice were divided into four groups: control group (C), methionine deficiency group (MD), methionine + heat stress group (MH), and methionine deficiency + heat stress group (MDH). Histopathological techniques, PAS-Alcian blue staining, immunohistochemistry method, biochemical quantification method, ELISA, and micro method were used to study the changes in the intestinal mucosal morphology, the number of goblet cells, the expression of tight junction proteins, the peroxide product contents and antioxidant enzyme activities, the intestinal mucosal damage, the content of immunoglobulins and HSP70, the activity of Na+/K+-ATPase. The results showed that methionine can improve intestinal mucosal morphology (increase the villi height, V/C value, and muscle layer thickness, decrease crypt depth), increase the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) and the content of DAO, decrease the content of intestinal mucosa damage markers (ET, FABP2) and peroxidation products (MDA), increase the activity of antioxidant enzymes (GR, GSH-Px, SOD), the number of goblet cells, the contents of immunoglobulins (sIgA, IgA, IgG, IgM) and stress protein (HSP70), and the activity of Na+/K+-ATPase. It is suggested that methionine can alleviate intestinal damage in heat-stressed mice.


Asunto(s)
Respuesta al Choque Térmico , Mucosa Intestinal , Metionina , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Respuesta al Choque Térmico/efectos de los fármacos , Masculino , Proteínas de Uniones Estrechas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
12.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203732

RESUMEN

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Asunto(s)
Bacillus licheniformis , Bacillus , Colitis , Probióticos , Animales , Ratones , Colitis/inducido químicamente , Colitis/terapia , Camelus , Homeostasis , Probióticos/farmacología , Probióticos/uso terapéutico
13.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126102

RESUMEN

Eosinophilic esophagitis (EoE) and inflammatory bowel disease (IBD) are chronic inflammatory disorders of the gastrointestinal tract, with EoE predominantly provoked by food and aeroallergens, whereas IBD is driven by a broader spectrum of immunopathological and environmental triggers. This review presents a comprehensive comparison of the pathophysiological and therapeutic strategies for EoE and IBD. We examine the current understanding of their underlying mechanisms, particularly the interplay between environmental factors and genetic susceptibility. A crucial element in both diseases is the integrity of the epithelial barrier, whose disruption plays a central role in their pathogenesis. The involvement of eosinophils, mast cells, B cells, T cells, dendritic cells, macrophages, and their associated cytokines is examined, highlighting the importance of targeting cytokine signaling pathways to modulate immune-epithelial interactions. We propose that advances in computation tools will uncover the significance of G-protein coupled receptors (GPCRs) in connecting immune and epithelial cells, leading to novel therapies for EoE and IBD.


Asunto(s)
Esofagitis Eosinofílica , Enfermedades Inflamatorias del Intestino , Humanos , Esofagitis Eosinofílica/etiología , Esofagitis Eosinofílica/inmunología , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Animales , Citocinas/metabolismo , Eosinófilos/metabolismo , Eosinófilos/inmunología , Eosinófilos/patología , Predisposición Genética a la Enfermedad
14.
J Sci Food Agric ; 104(5): 2728-2743, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37989715

RESUMEN

BACKGROUND: Citrus pulp (CP) is rich in pectin, and studies have shown that pectin possesses antioxidant, anti-inflammatory, and gut microbiota-regulating properties. However, the application of CP in aquafeed is limited. In this study, the effect of dietary inclusion of CP on the intestinal health of largemouth bass (Micropterus salmoides) was investigated. Juveniles of similar size (6.95 ± 0.07 g) were fed isonitrogenous and isoenergetic diets containing different levels of CP (0%, 3%, 6%, 9%, 12%, or 15%) for 58 days. RESULTS: As the level of CP in the feed for largemouth bass increased, the fish's growth performance and intestinal health initially improved and then declined. Adding low doses of CP (≤9%) to the feed had no significant impact on the growth performance of large-mouth black bass, whereas high doses of CP (>9%) significantly reduced their growth performance. Adding 6%, 9%, or 12% of CP to that feed enhanced the expression of genes related to tight junctions, anti-inflammatory activity, anti-apoptotic activity, and antioxidant activity in the intestines of largemouth bass. It reduced intestinal inflammation and improved intestinal nutrient absorption, intestinal mucosal barrier function, and intestinal antioxidant capacity. Moreover, it improved the α-diversity, structure, and function of the intestinal flora. The addition of 6% CP had the most beneficial effect on the intestinal health of largemouth bass. On the other hand, the addition of 15% CP had adverse effects on the intestinal antioxidant capacity and intestinal mucosal barrier function of largemouth bass. CONCLUSION: Adding 6-9% CP to the feed for largemouth bass can improve their intestinal health without having a significant impact on their growth performance. CP could serve as a novel prebiotic and immunostimulant ingredient in aquafeed. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Lubina , Animales , Antioxidantes/metabolismo , Lubina/genética , Lubina/metabolismo , Dieta/veterinaria , Intestinos , Antiinflamatorios/metabolismo , Pectinas/metabolismo
15.
BMC Oral Health ; 24(1): 958, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153968

RESUMEN

BACKGROUND: Preventing the progression of chronic oral graft-versus-host disease (cGVHD) is essential for maintaining oral health, improving quality of life, minimizing functional impairment, reducing systemic complications, and addressing treatment challenges. PURPOSE: To evaluate the effectiveness of early intervention with oral mucosal barrier protective agents in preventing the progression of cGVHD and its impact on oral health, quality of life, and treatment response. METHODS: This retrospective cohort study included 75 participants, with 34 in the non-oral mucosal barrier protective agent group and 41 in the oral mucosal barrier protective agent group. Baseline characteristics, oral mucosal health parameters, quality of life assessments, and curative effect data were collected and compared between the two study groups. RESULTS: The group receiving oral mucosal barrier protectants (n = 41) exhibited significantly lower severity of oral mucositis compared to the group without such protectants (n = 34) (2.12 ± 0.48 vs. 2.56 ± 0.63, P = 0.001) and the incidence of complications was significantly lower in the group receiving oral mucosal barrier protectants (P < 0.05). Additionally, the quality of life assessment showed marked improvements in somatization, emotional management, and social reintegration in the oral mucosal barrier protectant group compared to the group without these protectants (P < 0.05). Furthermore, the assessment of treatment efficacy revealed significantly higher rates of both complete and partial responses in the oral mucosal barrier protectant group, along with a notable reduction in disease progression compared to the group without these protectants (P < 0.001). CONCLUSION: Early intervention with oral mucosal barrier protective agents was associated with improved oral health parameters, enhanced quality of life, and a more favorable treatment response in the context of cGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Mucosa Bucal , Calidad de Vida , Humanos , Estudios Retrospectivos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Enfermedad Crónica , Estomatitis/prevención & control , Estomatitis/etiología , Estudios de Cohortes , Intervención Médica Temprana
16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1741-1748, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812186

RESUMEN

Ulcerative colitis(UC) is one of the common gastrointestinal diseases worldwide. In recent years, the incidence of UC has been continuously increasing, seriously threatening the health of people globally. It thus has become an urgent problem that needs to be addressed. There is research evidence that intestinal mucosal barrier dysfunction, including changes in intestinal stem cell secretion lineage, mucosal layer damage, disruption of cell junctions, overactive immune function, and imbalanced gut microbiota, is an important pathogenic factor and molecular basis of UC. The Notch signaling pathway is a highly conserved signaling pathway in eukaryotes during evolution, which transmits signals through cell connections between adjacent cells, affecting a series of processes such as cell proliferation, differentiation, development, migration, and apoptosis. Therefore, the Notch signaling pathway can regulate intestinal stem cells, CD4~+T cells, innate lymphoid cells(ILCs), macrophages(MØ), and intestinal microbiota and thus affect the chemical, physical, immune, and biological mucosal barriers of the intestinal mucosa. Its function is extensive and unique, different from those signaling pathways that mainly focus on anti-inflammatory and antioxidant stress. It can explain the therapeutic effects of traditional Chinese medicine from different perspectives. This article reviewed the role of the Notch1 signaling pathway in the pathogenesis of UC and the relevant literature on the targeted prevention and treatment of UC with traditional Chinese medicine, so as to provide new targets and theoretical support for further research on the effective prevention and treatment of UC.


Asunto(s)
Colitis Ulcerosa , Receptor Notch1 , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Animales , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China
17.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4499-4509, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307786

RESUMEN

This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polvos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Humanos , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Triglicéridos/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3340-3347, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041097

RESUMEN

This study aims to explore the protective effect of Albizia chinensis saponin on ethanol-induced acute gastric ulcer in rats and elucidate its mechanisms. SD rats were deprived of water for 24 hours before the experiment. The control group and model group were administered water by gavage, and the positive drug group received rabeprazole sodium solution(40 mg·kg~(-1)) by gavage. The experimental groups were given different doses of Albizia chinensis saponin solution(3, 10, and 30 mg·kg~(-1)). After 30 minutes, the control group received 1.5 mL of water by gavage, while the other groups were administered an equal volume of 95% ethanol for modeling. After six hours, the rats were killed by cervical dislocation, and the stomachs were collected. The ulcer area was measured, and the ulcer index was calculated. Hematoxylin-eosin(HE) staining was performed to assess histopathological changes in gastric tissue. Periodic acid-Schiff(PAS) staining was used to evaluate the distribution of gastric mucosal surface mucus. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of phospholipids and aminohexose in the gastric mucosa. Western blot was performed to determine the expression levels of the bicarbonate transporter, matrix metalloproteinase, and tight junction-associated proteins in gastric tissue. Immunohistochemistry(IHC) staining was conducted to quantify the number of positive cells for secreted mucin and tight junction-associated proteins. The results showed that the gastric tissue surface of rats in the control group was smooth without ulceration, and the gastric ulcer index of rats in the model group was 35±11. Albizia chinensis saponin at doses of 3, 10, and 30 mg·kg~(-1) resulted in inhibition rates of gastric ulcer of 46%(P<0.01), 85%(P<0.001), and 100%(P<0.001), respectively. Severe disruption of gastric mucosal structure and absence of the mucus layer were observed in the model group. Compared with the model group, the Albizia chinensis saponin group showed intact gastric mucosal surface mucus layer, significantly increased levels of phospholipids and aminohexose in the mucus, increased number of MUC5AC positive cells, and upregulated expression levels of the bicarbonate transporter SLC26A3 and CFTR. It also showed decreased phosphorylation of JNK and c-Jun, reduced expression levels of MMP-8, elevated expression of TIMP-1, and increased expression levels of Occludin and ZO-1. In conclusion, Albizia chinensis saponin enhances the function of the mucus-bicarbonate barrier by upregulating the content of MUC5AC, phospholipids, and aminohexose and increasing the expression levels of the bicarbonate transporter SLC26A3 and CFTR. Moreover, Albizia chinensis saponin exerts its protective effects on gastric ulcers by inhibiting the JNK signaling pathway to prevent excessive activation of MMP-8, thereby reducing the degradation of Occludin and ZO-1 and enhancing the mucosal barrier function. In summary, Albizia chinensis saponin exerts its anti-gastric ulcer effects by simultaneously enhancing the mucus barrier and the mucosal barrier.


Asunto(s)
Albizzia , Medicamentos Herbarios Chinos , Etanol , Mucosa Gástrica , Moco , Ratas Sprague-Dawley , Saponinas , Úlcera Gástrica , Animales , Saponinas/farmacología , Ratas , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Etanol/efectos adversos , Masculino , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/prevención & control , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Albizzia/química , Moco/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Humanos
19.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1762-1773, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812188

RESUMEN

The study aimed to investigate the therapeutic effects of the n-butanol extract of Pulsatilla Decoction(BEPD) on ulcerative colitis(UC) via the bone morphogenetic protein(BMP) signaling pathway. C57BL/6 mice were divided into six groups: control, model, mesalazine, and BEPD low-, medium-, and high-dose groups. Except for the control group, the rest groups were treated with 3% dextran sulfate sodium(DSS) freely for seven consecutive days to establish the UC mouse model, followed by treatment with different concentrations of BEPD and mesalazine by gavage. The murine body weight and disease activity index(DAI) were recorded. After the mice were sacrificed, their colon tissues were collected for histological analysis. Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to detect the number and mucus secretion status of goblet cells; immunohistochemistry was performed to measure the expression of ki67, cleaved caspase-3, mucin 2(Muc2), and matrix metalloproteinase-9(MMP9) in colon tissues; and immunofluorescence was used to analyze the expression of tight junction proteins in colon tissues, and enzyme linked immunosorbent assay(ELISA) was employed to quantify the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1ß, and IL-6. Western blot was conducted to evaluate the expression of BMP pathway-related proteins in mouse colon tissues. Quantitative real-time PCR(qRT-PCR) was performed to measure the expression of genes related to goblet cell differentiation in mouse colon tissues. In addition, this study also examined the protective effect and underlying mechanism of BEPD-containing serum on lipopolysaccharide(LPS)-induced barrier damages in LS174T goblet cells in vitro. The results showed that BEPD significantly alleviated UC symptoms in mice, restored goblet cell diffe-rentiation function, promoted Muc2 secretion and tight junction protein expression, and suppressed inflammatory factor secretion while activating the BMP signaling pathway. Therefore, BEPD may exert its therapeutic effects on UC by activating the BMP signaling pathway, providing a new strategy for drug intervention in UC.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Pulsatilla , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Pulsatilla/química , Humanos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética
20.
Gut ; 72(11): 2164-2183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640443

RESUMEN

Mucosal healing on endoscopy has emerged as a key prognostic parameter in the management of patients with IBD (Crohn's disease, ulcerative colitis/UC) and can predict sustained clinical remission and resection-free survival. The structural basis for this type of mucosal healing is a progressive resolution of intestinal inflammation with associated healing of ulcers and improved epithelial barrier function. However, in some cases with mucosal healing on endoscopy, evidence of histological activity in mucosal biopsies has been observed. Subsequently, in UC, a second, deeper type of mucosal healing, denoted histological healing, was defined which requires the absence of active inflammation in mucosal biopsies. Both levels of mucosal healing should be considered as initial events in the resolution of gut inflammation in IBD rather than as indicators of complete transmural healing. In this review, the effects of anti-inflammatory, biological or immunosuppressive agents as well as small molecules on mucosal healing in clinical studies are highlighted. In addition, we focus on the implications of mucosal healing for clinical management of patients with IBD. Moreover, emerging techniques for the analysis of mucosal healing as well as potentially deeper levels of mucosal healing such as transmural healing and functional barrier healing of the mucosa are discussed. Although none of these new levels of healing indicate a definitive cure of the diseases, they make an important contribution to the assessment of patients' prognosis. The ultimate level of healing in IBD would be a resolution of all aspects of intestinal and extraintestinal inflammation (complete healing).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA